Step |
Hyp |
Ref |
Expression |
1 |
|
sbievg.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
sbievg.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
sbievg.3 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝑤 |
5 |
4 1
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑥 = 𝑤 → 𝜑 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝑤 |
7 |
6 2
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝑤 → 𝜓 ) |
8 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
9 |
8 3
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 𝑤 → 𝜑 ) ↔ ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
10 |
5 7 9
|
cbvalv1 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) |
11 |
10
|
imbi2i |
⊢ ( ( 𝑤 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ↔ ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
12 |
11
|
albii |
⊢ ( ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
13 |
|
df-sb |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) |
14 |
|
df-sb |
⊢ ( [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
15 |
12 13 14
|
3bitr4i |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) |