Metamath Proof Explorer
Description: sbievw applied twice, avoiding a DV condition on x , y .
Based on proofs by Wolf Lammen. (Contributed by Steven Nguyen, 29-Jul-2023)
|
|
Ref |
Expression |
|
Hypotheses |
sbievw2.1 |
⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) |
|
|
sbievw2.2 |
⊢ ( 𝑤 = 𝑦 → ( 𝜒 ↔ 𝜓 ) ) |
|
Assertion |
sbievw2 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sbievw2.1 |
⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
sbievw2.2 |
⊢ ( 𝑤 = 𝑦 → ( 𝜒 ↔ 𝜓 ) ) |
3 |
|
sbcom3vv |
⊢ ( [ 𝑦 / 𝑤 ] [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑤 ] [ 𝑦 / 𝑥 ] 𝜑 ) |
4 |
1
|
sbievw |
⊢ ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝜒 ) |
5 |
4
|
sbbii |
⊢ ( [ 𝑦 / 𝑤 ] [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑤 ] 𝜒 ) |
6 |
|
sbv |
⊢ ( [ 𝑦 / 𝑤 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
7 |
3 5 6
|
3bitr3i |
⊢ ( [ 𝑦 / 𝑤 ] 𝜒 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
8 |
2
|
sbievw |
⊢ ( [ 𝑦 / 𝑤 ] 𝜒 ↔ 𝜓 ) |
9 |
7 8
|
bitr3i |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |