Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbi1 | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 2 | sbi2 | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) → [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) | |
| 3 | 1 2 | impbii | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |