Metamath Proof Explorer


Theorem sbimd

Description: Deduction substituting both sides of an implication. (Contributed by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 9-Jul-2023)

Ref Expression
Hypotheses sbimd.1 𝑥 𝜑
sbimd.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion sbimd ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbimd.1 𝑥 𝜑
2 sbimd.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 2 alrimi ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
4 spsbim ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) )
5 3 4 syl ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) )