| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 2 |
1
|
biimpi |
⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 3 |
|
iota4 |
⊢ ( ∃! 𝑥 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) |
| 4 |
|
iotaval |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) |
| 5 |
4
|
eqcomd |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
| 6 |
|
spsbim |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 7 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 8 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) |
| 9 |
6 7 8
|
3imtr3g |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 10 |
|
dfsbcq |
⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) ) |
| 11 |
|
dfsbcq |
⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) |
| 12 |
10 11
|
imbi12d |
⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 13 |
9 12
|
imbitrid |
⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 14 |
13
|
com23 |
⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 15 |
5 14
|
syl |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 16 |
15
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 17 |
2 3 16
|
sylc |
⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) |
| 18 |
|
iotaexeu |
⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) |
| 19 |
10 11
|
anbi12d |
⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ∧ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) ) |
| 20 |
19
|
imbi1d |
⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ∧ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 21 |
|
sbcan |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 22 |
|
spesbc |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 23 |
21 22
|
sylbir |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 24 |
20 23
|
vtoclg |
⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V → ( ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ∧ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 25 |
24
|
expd |
⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 26 |
18 3 25
|
sylc |
⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 27 |
26
|
anc2li |
⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 → ( ∃! 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 28 |
|
eupicka |
⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
| 29 |
27 28
|
syl6 |
⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
| 30 |
17 29
|
impbid |
⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) |