Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sblbis.1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) | |
| Assertion | sblbis | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜒 ↔ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sblbis.1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) | |
| 2 | sbbi | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜒 ↔ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 3 | 1 | bibi2i | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜒 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝜓 ) ) |
| 4 | 2 3 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜒 ↔ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝜓 ) ) |