Metamath Proof Explorer


Theorem sblbis

Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993)

Ref Expression
Hypothesis sblbis.1 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
Assertion sblbis ( [ 𝑦 / 𝑥 ] ( 𝜒𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜒𝜓 ) )

Proof

Step Hyp Ref Expression
1 sblbis.1 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
2 sbbi ( [ 𝑦 / 𝑥 ] ( 𝜒𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
3 1 bibi2i ( ( [ 𝑦 / 𝑥 ] 𝜒 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜒𝜓 ) )
4 2 3 bitri ( [ 𝑦 / 𝑥 ] ( 𝜒𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜒𝜓 ) )