Database CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY Predicate calculus with equality:  Auxiliary axiom schemes (4 schemes) Axiom scheme ax-12 (Substitution) sblim  
				
		 
		
			
		 
		Description:   Substitution in an implication with a variable not free in the
       consequent affects only the antecedent.  (Contributed by NM , 14-Nov-2013)   (Revised by Mario Carneiro , 4-Oct-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						sblim.1 ⊢  Ⅎ 𝑥  𝜓   
				
					Assertion 
					sblim ⊢   ( [ 𝑦   /  𝑥  ] ( 𝜑   →  𝜓  )  ↔  ( [ 𝑦   /  𝑥  ] 𝜑   →  𝜓  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							sblim.1 ⊢  Ⅎ 𝑥  𝜓   
						
							2 
								
							 
							sbim ⊢  ( [ 𝑦   /  𝑥  ] ( 𝜑   →  𝜓  )  ↔  ( [ 𝑦   /  𝑥  ] 𝜑   →  [ 𝑦   /  𝑥  ] 𝜓  ) )  
						
							3 
								1 
							 
							sbf ⊢  ( [ 𝑦   /  𝑥  ] 𝜓   ↔  𝜓  )  
						
							4 
								3 
							 
							imbi2i ⊢  ( ( [ 𝑦   /  𝑥  ] 𝜑   →  [ 𝑦   /  𝑥  ] 𝜓  )  ↔  ( [ 𝑦   /  𝑥  ] 𝜑   →  𝜓  ) )  
						
							5 
								2  4 
							 
							bitri ⊢  ( [ 𝑦   /  𝑥  ] ( 𝜑   →  𝜓  )  ↔  ( [ 𝑦   /  𝑥  ] 𝜑   →  𝜓  ) )