| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbex | ⊢ ( [ 𝑦  /  𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑤 )  ↔  ∃ 𝑤 [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  =  𝑤 | 
						
							| 3 | 2 | sblim | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  →  𝑧  =  𝑤 )  ↔  ( [ 𝑦  /  𝑥 ] 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 4 | 3 | sbalv | ⊢ ( [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑤 )  ↔  ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 5 | 4 | exbii | ⊢ ( ∃ 𝑤 [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑤 )  ↔  ∃ 𝑤 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 6 | 1 5 | bitri | ⊢ ( [ 𝑦  /  𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑤 )  ↔  ∃ 𝑤 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 7 |  | df-mo | ⊢ ( ∃* 𝑧 𝜑  ↔  ∃ 𝑤 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 8 | 7 | sbbii | ⊢ ( [ 𝑦  /  𝑥 ] ∃* 𝑧 𝜑  ↔  [ 𝑦  /  𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 9 |  | df-mo | ⊢ ( ∃* 𝑧 [ 𝑦  /  𝑥 ] 𝜑  ↔  ∃ 𝑤 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 10 | 6 8 9 | 3bitr4i | ⊢ ( [ 𝑦  /  𝑥 ] ∃* 𝑧 𝜑  ↔  ∃* 𝑧 [ 𝑦  /  𝑥 ] 𝜑 ) |