Metamath Proof Explorer
		
		
		
		Description:  One direction of sbn , using fewer axioms.  Compare 19.2 .
     (Contributed by Steven Nguyen, 18-Aug-2023)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | sbn1 | ⊢  ( [ 𝑡  /  𝑥 ] ¬  𝜑  →  ¬  [ 𝑡  /  𝑥 ] 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nsb | ⊢ ( ∀ 𝑥 ¬  ⊥  →  ¬  [ 𝑡  /  𝑥 ] ⊥ ) | 
						
							| 2 |  | fal | ⊢ ¬  ⊥ | 
						
							| 3 | 1 2 | mpg | ⊢ ¬  [ 𝑡  /  𝑥 ] ⊥ | 
						
							| 4 |  | pm2.21 | ⊢ ( ¬  𝜑  →  ( 𝜑  →  ⊥ ) ) | 
						
							| 5 | 4 | sb2imi | ⊢ ( [ 𝑡  /  𝑥 ] ¬  𝜑  →  ( [ 𝑡  /  𝑥 ] 𝜑  →  [ 𝑡  /  𝑥 ] ⊥ ) ) | 
						
							| 6 | 3 5 | mtoi | ⊢ ( [ 𝑡  /  𝑥 ] ¬  𝜑  →  ¬  [ 𝑡  /  𝑥 ] 𝜑 ) |