Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
2 |
1
|
sb8ev |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
3 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
4 |
3
|
sb8v |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) |
5 |
2 4
|
imbi12i |
⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
6 |
|
df-nf |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
7 |
|
pm11.53v |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
8 |
5 6 7
|
3bitr4i |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
9 |
3
|
sb8ev |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) |
10 |
1
|
sb8v |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
11 |
9 10
|
imbi12i |
⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
12 |
|
pm11.53v |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
13 |
11 6 12
|
3bitr4i |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
14 |
|
alcom |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
15 |
13 14
|
bitri |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
16 |
8 15
|
anbi12i |
⊢ ( ( Ⅎ 𝑥 𝜑 ∧ Ⅎ 𝑥 𝜑 ) ↔ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
17 |
|
pm4.24 |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ( Ⅎ 𝑥 𝜑 ∧ Ⅎ 𝑥 𝜑 ) ) |
18 |
|
2albiim |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
19 |
16 17 18
|
3bitr4i |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |