| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 | 1 | sb8ef | ⊢ ( ∃ 𝑥 𝜑  ↔  ∃ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 3 |  | sb8v | ⊢ ( ∀ 𝑥 𝜑  ↔  ∀ 𝑧 [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 4 | 2 3 | imbi12i | ⊢ ( ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ( ∃ 𝑦 [ 𝑦  /  𝑥 ] 𝜑  →  ∀ 𝑧 [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 5 |  | df-nf | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 6 |  | pm11.53v | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( ∃ 𝑦 [ 𝑦  /  𝑥 ] 𝜑  →  ∀ 𝑧 [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 7 | 4 5 6 | 3bitr4i | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 9 | 8 | sb8ef | ⊢ ( ∃ 𝑥 𝜑  ↔  ∃ 𝑧 [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 10 |  | sb8v | ⊢ ( ∀ 𝑥 𝜑  ↔  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 11 | 9 10 | imbi12i | ⊢ ( ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ( ∃ 𝑧 [ 𝑧  /  𝑥 ] 𝜑  →  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 12 |  | pm11.53v | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 )  ↔  ( ∃ 𝑧 [ 𝑧  /  𝑥 ] 𝜑  →  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 13 | 11 5 12 | 3bitr4i | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑧 ∀ 𝑦 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 14 |  | alcom | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 )  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 15 | 13 14 | bitri | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 16 | 7 15 | anbi12i | ⊢ ( ( Ⅎ 𝑥 𝜑  ∧  Ⅎ 𝑥 𝜑 )  ↔  ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 )  ∧  ∀ 𝑦 ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 17 |  | pm4.24 | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ( Ⅎ 𝑥 𝜑  ∧  Ⅎ 𝑥 𝜑 ) ) | 
						
							| 18 |  | 2albiim | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 )  ∧  ∀ 𝑦 ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 19 | 16 17 18 | 3bitr4i | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) |