Metamath Proof Explorer


Theorem sbnf2

Description: Two ways of expressing " x is (effectively) not free in ph ". (Contributed by Gérard Lang, 14-Nov-2013) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 22-Sep-2018) Avoid ax-13 . (Revised by Wolf Lammen, 30-Jan-2023)

Ref Expression
Assertion sbnf2 ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑦 𝜑
2 1 sb8ev ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
3 nfv 𝑧 𝜑
4 3 sb8v ( ∀ 𝑥 𝜑 ↔ ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 )
5 2 4 imbi12i ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) )
6 df-nf ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
7 pm11.53v ( ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) )
8 5 6 7 3bitr4i ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) )
9 3 sb8ev ( ∃ 𝑥 𝜑 ↔ ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 )
10 1 sb8v ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 )
11 9 10 imbi12i ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
12 pm11.53v ( ∀ 𝑧𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) )
13 11 6 12 3bitr4i ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑧𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) )
14 alcom ( ∀ 𝑧𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) )
15 13 14 bitri ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) )
16 8 15 anbi12i ( ( Ⅎ 𝑥 𝜑 ∧ Ⅎ 𝑥 𝜑 ) ↔ ( ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ∀ 𝑦𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) )
17 pm4.24 ( Ⅎ 𝑥 𝜑 ↔ ( Ⅎ 𝑥 𝜑 ∧ Ⅎ 𝑥 𝜑 ) )
18 2albiim ( ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ∀ 𝑦𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) )
19 16 17 18 3bitr4i ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) )