| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑦 ∈ V |
| 2 |
|
csbtt |
⊢ ( ( 𝑦 ∈ V ∧ Ⅎ 𝑥 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
| 3 |
1 2
|
mpan |
⊢ ( Ⅎ 𝑥 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
| 4 |
|
vex |
⊢ 𝑧 ∈ V |
| 5 |
|
csbtt |
⊢ ( ( 𝑧 ∈ V ∧ Ⅎ 𝑥 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
| 6 |
4 5
|
mpan |
⊢ ( Ⅎ 𝑥 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
| 7 |
3 6
|
eqtr4d |
⊢ ( Ⅎ 𝑥 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 8 |
7
|
alrimivv |
⊢ ( Ⅎ 𝑥 𝐴 → ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑤 ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
| 10 |
|
eleq2 |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ( 𝑤 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
| 11 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ) |
| 12 |
|
sbcel2 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 13 |
11 12
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 14 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ) |
| 15 |
|
sbcel2 |
⊢ ( [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 16 |
14 15
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 17 |
10 13 16
|
3bitr4g |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ) ) |
| 18 |
17
|
2alimi |
⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ) ) |
| 19 |
|
sbnf2 |
⊢ ( Ⅎ 𝑥 𝑤 ∈ 𝐴 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝑤 ∈ 𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤 ∈ 𝐴 ) ) |
| 20 |
18 19
|
sylibr |
⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → Ⅎ 𝑥 𝑤 ∈ 𝐴 ) |
| 21 |
9 20
|
nfcd |
⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 22 |
8 21
|
impbii |
⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |