Metamath Proof Explorer


Theorem sbnfc2

Description: Two ways of expressing " x is (effectively) not free in A ". (Contributed by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion sbnfc2 ( 𝑥 𝐴 ↔ ∀ 𝑦𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 vex 𝑦 ∈ V
2 csbtt ( ( 𝑦 ∈ V ∧ 𝑥 𝐴 ) → 𝑦 / 𝑥 𝐴 = 𝐴 )
3 1 2 mpan ( 𝑥 𝐴 𝑦 / 𝑥 𝐴 = 𝐴 )
4 vex 𝑧 ∈ V
5 csbtt ( ( 𝑧 ∈ V ∧ 𝑥 𝐴 ) → 𝑧 / 𝑥 𝐴 = 𝐴 )
6 4 5 mpan ( 𝑥 𝐴 𝑧 / 𝑥 𝐴 = 𝐴 )
7 3 6 eqtr4d ( 𝑥 𝐴 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 )
8 7 alrimivv ( 𝑥 𝐴 → ∀ 𝑦𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 )
9 nfv 𝑤𝑦𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴
10 eleq2 ( 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 → ( 𝑤 𝑦 / 𝑥 𝐴𝑤 𝑧 / 𝑥 𝐴 ) )
11 sbsbc ( [ 𝑦 / 𝑥 ] 𝑤𝐴[ 𝑦 / 𝑥 ] 𝑤𝐴 )
12 sbcel2 ( [ 𝑦 / 𝑥 ] 𝑤𝐴𝑤 𝑦 / 𝑥 𝐴 )
13 11 12 bitri ( [ 𝑦 / 𝑥 ] 𝑤𝐴𝑤 𝑦 / 𝑥 𝐴 )
14 sbsbc ( [ 𝑧 / 𝑥 ] 𝑤𝐴[ 𝑧 / 𝑥 ] 𝑤𝐴 )
15 sbcel2 ( [ 𝑧 / 𝑥 ] 𝑤𝐴𝑤 𝑧 / 𝑥 𝐴 )
16 14 15 bitri ( [ 𝑧 / 𝑥 ] 𝑤𝐴𝑤 𝑧 / 𝑥 𝐴 )
17 10 13 16 3bitr4g ( 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 → ( [ 𝑦 / 𝑥 ] 𝑤𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤𝐴 ) )
18 17 2alimi ( ∀ 𝑦𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 → ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝑤𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤𝐴 ) )
19 sbnf2 ( Ⅎ 𝑥 𝑤𝐴 ↔ ∀ 𝑦𝑧 ( [ 𝑦 / 𝑥 ] 𝑤𝐴 ↔ [ 𝑧 / 𝑥 ] 𝑤𝐴 ) )
20 18 19 sylibr ( ∀ 𝑦𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 → Ⅎ 𝑥 𝑤𝐴 )
21 9 20 nfcd ( ∀ 𝑦𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 𝑥 𝐴 )
22 8 21 impbii ( 𝑥 𝐴 ↔ ∀ 𝑦𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 )