Step |
Hyp |
Ref |
Expression |
1 |
|
sbim |
⊢ ( [ 𝑦 / 𝑥 ] ( ¬ 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
2 |
|
sbn |
⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
3 |
2
|
imbi1i |
⊢ ( ( [ 𝑦 / 𝑥 ] ¬ 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( ¬ [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
4 |
1 3
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( ¬ 𝜑 → 𝜓 ) ↔ ( ¬ [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
5 |
|
df-or |
⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) |
6 |
5
|
sbbii |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ [ 𝑦 / 𝑥 ] ( ¬ 𝜑 → 𝜓 ) ) |
7 |
|
df-or |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( ¬ [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
8 |
4 6 7
|
3bitr4i |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ) |