| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbim | ⊢ ( [ 𝑦  /  𝑥 ] ( ¬  𝜑  →  𝜓 )  ↔  ( [ 𝑦  /  𝑥 ] ¬  𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 2 |  | sbn | ⊢ ( [ 𝑦  /  𝑥 ] ¬  𝜑  ↔  ¬  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 3 | 2 | imbi1i | ⊢ ( ( [ 𝑦  /  𝑥 ] ¬  𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 )  ↔  ( ¬  [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 4 | 1 3 | bitri | ⊢ ( [ 𝑦  /  𝑥 ] ( ¬  𝜑  →  𝜓 )  ↔  ( ¬  [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 5 |  | df-or | ⊢ ( ( 𝜑  ∨  𝜓 )  ↔  ( ¬  𝜑  →  𝜓 ) ) | 
						
							| 6 | 5 | sbbii | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  [ 𝑦  /  𝑥 ] ( ¬  𝜑  →  𝜓 ) ) | 
						
							| 7 |  | df-or | ⊢ ( ( [ 𝑦  /  𝑥 ] 𝜑  ∨  [ 𝑦  /  𝑥 ] 𝜓 )  ↔  ( ¬  [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 8 | 4 6 7 | 3bitr4i | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( [ 𝑦  /  𝑥 ] 𝜑  ∨  [ 𝑦  /  𝑥 ] 𝜓 ) ) |