Step |
Hyp |
Ref |
Expression |
1 |
|
sbralie.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
cbvralsvw |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 ↔ ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ) |
3 |
2
|
sbbii |
⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ) |
4 |
|
raleq |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ) ) |
5 |
4
|
sbievw |
⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ) |
6 |
|
cbvralsvw |
⊢ ( ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝑦 [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ) |
7 |
|
sbco2vv |
⊢ ( [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ↔ [ 𝑥 / 𝑦 ] 𝜓 ) |
8 |
1
|
bicomd |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜑 ) ) |
9 |
8
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜓 ↔ 𝜑 ) ) |
10 |
9
|
sbievw |
⊢ ( [ 𝑥 / 𝑦 ] 𝜓 ↔ 𝜑 ) |
11 |
7 10
|
bitri |
⊢ ( [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ↔ 𝜑 ) |
12 |
11
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑦 [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝑦 𝜑 ) |
13 |
6 12
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝑦 𝜑 ) |
14 |
3 5 13
|
3bitrri |
⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |