| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbralie.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝑦 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  𝜑 ) ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 4 | 3 | sblim | ⊢ ( [ 𝑦  /  𝑧 ] ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  ( [ 𝑦  /  𝑧 ] 𝑥  ∈  𝑧  →  𝜑 ) ) | 
						
							| 5 |  | elsb2 | ⊢ ( [ 𝑦  /  𝑧 ] 𝑥  ∈  𝑧  ↔  𝑥  ∈  𝑦 ) | 
						
							| 6 | 5 | imbi1i | ⊢ ( ( [ 𝑦  /  𝑧 ] 𝑥  ∈  𝑧  →  𝜑 )  ↔  ( 𝑥  ∈  𝑦  →  𝜑 ) ) | 
						
							| 7 | 4 6 | bitri | ⊢ ( [ 𝑦  /  𝑧 ] ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  ( 𝑥  ∈  𝑦  →  𝜑 ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑥 [ 𝑦  /  𝑧 ] ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  𝜑 ) ) | 
						
							| 9 |  | elequ1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑧  ↔  𝑦  ∈  𝑧 ) ) | 
						
							| 10 | 9 1 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  ( 𝑦  ∈  𝑧  →  𝜓 ) ) ) | 
						
							| 11 | 10 | cbvalvw | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝜓 ) ) | 
						
							| 12 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝑥 𝜓  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  𝜓 ) ) | 
						
							| 13 | 12 | sbbii | ⊢ ( [ 𝑧  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓  ↔  [ 𝑧  /  𝑥 ] ∀ 𝑦 ( 𝑦  ∈  𝑥  →  𝜓 ) ) | 
						
							| 14 |  | sbal | ⊢ ( [ 𝑧  /  𝑥 ] ∀ 𝑦 ( 𝑦  ∈  𝑥  →  𝜓 )  ↔  ∀ 𝑦 [ 𝑧  /  𝑥 ] ( 𝑦  ∈  𝑥  →  𝜓 ) ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 16 | 15 | sblim | ⊢ ( [ 𝑧  /  𝑥 ] ( 𝑦  ∈  𝑥  →  𝜓 )  ↔  ( [ 𝑧  /  𝑥 ] 𝑦  ∈  𝑥  →  𝜓 ) ) | 
						
							| 17 |  | elsb2 | ⊢ ( [ 𝑧  /  𝑥 ] 𝑦  ∈  𝑥  ↔  𝑦  ∈  𝑧 ) | 
						
							| 18 | 17 | imbi1i | ⊢ ( ( [ 𝑧  /  𝑥 ] 𝑦  ∈  𝑥  →  𝜓 )  ↔  ( 𝑦  ∈  𝑧  →  𝜓 ) ) | 
						
							| 19 | 16 18 | bitri | ⊢ ( [ 𝑧  /  𝑥 ] ( 𝑦  ∈  𝑥  →  𝜓 )  ↔  ( 𝑦  ∈  𝑧  →  𝜓 ) ) | 
						
							| 20 | 19 | albii | ⊢ ( ∀ 𝑦 [ 𝑧  /  𝑥 ] ( 𝑦  ∈  𝑥  →  𝜓 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝜓 ) ) | 
						
							| 21 | 13 14 20 | 3bitrri | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  𝑧  →  𝜓 )  ↔  [ 𝑧  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓 ) | 
						
							| 22 | 11 21 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  [ 𝑧  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓 ) | 
						
							| 23 | 22 | sbbii | ⊢ ( [ 𝑦  /  𝑧 ] ∀ 𝑥 ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓 ) | 
						
							| 24 |  | sbal | ⊢ ( [ 𝑦  /  𝑧 ] ∀ 𝑥 ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  ∀ 𝑥 [ 𝑦  /  𝑧 ] ( 𝑥  ∈  𝑧  →  𝜑 ) ) | 
						
							| 25 |  | sbco2vv | ⊢ ( [ 𝑦  /  𝑧 ] [ 𝑧  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓  ↔  [ 𝑦  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓 ) | 
						
							| 26 | 23 24 25 | 3bitr3i | ⊢ ( ∀ 𝑥 [ 𝑦  /  𝑧 ] ( 𝑥  ∈  𝑧  →  𝜑 )  ↔  [ 𝑦  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓 ) | 
						
							| 27 | 2 8 26 | 3bitr2i | ⊢ ( ∀ 𝑥  ∈  𝑦 𝜑  ↔  [ 𝑦  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓 ) |