Metamath Proof Explorer


Theorem sbralie

Description: Implicit to explicit substitution that swaps variables in a rectrictedly universally quantified expression. (Contributed by NM, 5-Sep-2004)

Ref Expression
Hypothesis sbralie.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion sbralie ( ∀ 𝑥𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 sbralie.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 cbvralsvw ( ∀ 𝑦𝑥 𝜓 ↔ ∀ 𝑧𝑥 [ 𝑧 / 𝑦 ] 𝜓 )
3 2 sbbii ( [ 𝑦 / 𝑥 ] ∀ 𝑦𝑥 𝜓 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑧𝑥 [ 𝑧 / 𝑦 ] 𝜓 )
4 raleq ( 𝑥 = 𝑦 → ( ∀ 𝑧𝑥 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑧𝑦 [ 𝑧 / 𝑦 ] 𝜓 ) )
5 4 sbievw ( [ 𝑦 / 𝑥 ] ∀ 𝑧𝑥 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑧𝑦 [ 𝑧 / 𝑦 ] 𝜓 )
6 cbvralsvw ( ∀ 𝑧𝑦 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝑦 [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 )
7 sbco2vv ( [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ↔ [ 𝑥 / 𝑦 ] 𝜓 )
8 1 bicomd ( 𝑥 = 𝑦 → ( 𝜓𝜑 ) )
9 8 equcoms ( 𝑦 = 𝑥 → ( 𝜓𝜑 ) )
10 9 sbievw ( [ 𝑥 / 𝑦 ] 𝜓𝜑 )
11 7 10 bitri ( [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓𝜑 )
12 11 ralbii ( ∀ 𝑥𝑦 [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝑦 𝜑 )
13 6 12 bitri ( ∀ 𝑧𝑦 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝑦 𝜑 )
14 3 5 13 3bitrri ( ∀ 𝑥𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦𝑥 𝜓 )