| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbralie.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | cbvralsvw | ⊢ ( ∀ 𝑦  ∈  𝑥 𝜓  ↔  ∀ 𝑧  ∈  𝑥 [ 𝑧  /  𝑦 ] 𝜓 ) | 
						
							| 3 | 2 | sbbii | ⊢ ( [ 𝑦  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓  ↔  [ 𝑦  /  𝑥 ] ∀ 𝑧  ∈  𝑥 [ 𝑧  /  𝑦 ] 𝜓 ) | 
						
							| 4 |  | raleq | ⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑧  ∈  𝑥 [ 𝑧  /  𝑦 ] 𝜓  ↔  ∀ 𝑧  ∈  𝑦 [ 𝑧  /  𝑦 ] 𝜓 ) ) | 
						
							| 5 | 4 | sbievw | ⊢ ( [ 𝑦  /  𝑥 ] ∀ 𝑧  ∈  𝑥 [ 𝑧  /  𝑦 ] 𝜓  ↔  ∀ 𝑧  ∈  𝑦 [ 𝑧  /  𝑦 ] 𝜓 ) | 
						
							| 6 |  | cbvralsvw | ⊢ ( ∀ 𝑧  ∈  𝑦 [ 𝑧  /  𝑦 ] 𝜓  ↔  ∀ 𝑥  ∈  𝑦 [ 𝑥  /  𝑧 ] [ 𝑧  /  𝑦 ] 𝜓 ) | 
						
							| 7 |  | sbco2vv | ⊢ ( [ 𝑥  /  𝑧 ] [ 𝑧  /  𝑦 ] 𝜓  ↔  [ 𝑥  /  𝑦 ] 𝜓 ) | 
						
							| 8 | 1 | bicomd | ⊢ ( 𝑥  =  𝑦  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 9 | 8 | equcoms | ⊢ ( 𝑦  =  𝑥  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 10 | 9 | sbievw | ⊢ ( [ 𝑥  /  𝑦 ] 𝜓  ↔  𝜑 ) | 
						
							| 11 | 7 10 | bitri | ⊢ ( [ 𝑥  /  𝑧 ] [ 𝑧  /  𝑦 ] 𝜓  ↔  𝜑 ) | 
						
							| 12 | 11 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑦 [ 𝑥  /  𝑧 ] [ 𝑧  /  𝑦 ] 𝜓  ↔  ∀ 𝑥  ∈  𝑦 𝜑 ) | 
						
							| 13 | 6 12 | bitri | ⊢ ( ∀ 𝑧  ∈  𝑦 [ 𝑧  /  𝑦 ] 𝜓  ↔  ∀ 𝑥  ∈  𝑦 𝜑 ) | 
						
							| 14 | 3 5 13 | 3bitrri | ⊢ ( ∀ 𝑥  ∈  𝑦 𝜑  ↔  [ 𝑦  /  𝑥 ] ∀ 𝑦  ∈  𝑥 𝜓 ) |