Metamath Proof Explorer
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 4-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
sbrbif.1 |
⊢ Ⅎ 𝑥 𝜒 |
|
|
sbrbif.2 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
|
Assertion |
sbrbif |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sbrbif.1 |
⊢ Ⅎ 𝑥 𝜒 |
2 |
|
sbrbif.2 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
3 |
2
|
sbrbis |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
4 |
1
|
sbf |
⊢ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝜒 ) |
5 |
4
|
bibi2i |
⊢ ( ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) |
6 |
3 5
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) |