Metamath Proof Explorer


Theorem sbrbif

Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 4-Oct-2016)

Ref Expression
Hypotheses sbrbif.1 𝑥 𝜒
sbrbif.2 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
Assertion sbrbif ( [ 𝑦 / 𝑥 ] ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbrbif.1 𝑥 𝜒
2 sbrbif.2 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
3 2 sbrbis ( [ 𝑦 / 𝑥 ] ( 𝜑𝜒 ) ↔ ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) )
4 1 sbf ( [ 𝑦 / 𝑥 ] 𝜒𝜒 )
5 4 bibi2i ( ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( 𝜓𝜒 ) )
6 3 5 bitri ( [ 𝑦 / 𝑥 ] ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) )