Step |
Hyp |
Ref |
Expression |
1 |
|
sbrim.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
bi2.04 |
⊢ ( ( 𝑥 = 𝑡 → ( 𝜑 → 𝜓 ) ) ↔ ( 𝜑 → ( 𝑥 = 𝑡 → 𝜓 ) ) ) |
3 |
2
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥 = 𝑡 → 𝜓 ) ) ) |
4 |
1
|
19.21 |
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝑥 = 𝑡 → 𝜓 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → 𝜓 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) |
6 |
5
|
imbi2i |
⊢ ( ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → 𝜓 ) ) ) ↔ ( 𝑡 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ) |
7 |
|
bi2.04 |
⊢ ( ( 𝑡 = 𝑦 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ↔ ( 𝜑 → ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → 𝜓 ) ) ) ↔ ( 𝜑 → ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ) |
9 |
8
|
albii |
⊢ ( ∀ 𝑡 ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → 𝜓 ) ) ) ↔ ∀ 𝑡 ( 𝜑 → ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ) |
10 |
|
df-sb |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ∀ 𝑡 ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → 𝜓 ) ) ) ) |
11 |
|
df-sb |
⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ ∀ 𝑡 ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) |
12 |
11
|
imbi2i |
⊢ ( ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → ∀ 𝑡 ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ) |
13 |
|
19.21v |
⊢ ( ∀ 𝑡 ( 𝜑 → ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ↔ ( 𝜑 → ∀ 𝑡 ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ) |
14 |
12 13
|
bitr4i |
⊢ ( ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ∀ 𝑡 ( 𝜑 → ( 𝑡 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) ) |
15 |
9 10 14
|
3bitr4i |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |