| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) |
| 2 |
|
bi2.04 |
⊢ ( ( 𝜑 → ( 𝑥 = 𝑦 → 𝜓 ) ) ↔ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) |
| 3 |
2
|
albii |
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝑥 = 𝑦 → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) ) |
| 4 |
|
19.21v |
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝑥 = 𝑦 → 𝜓 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) ) |
| 5 |
1 3 4
|
3bitr2i |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) ) |
| 6 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) |
| 7 |
6
|
imbi2i |
⊢ ( ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) ) |
| 8 |
5 7
|
bitr4i |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |