Metamath Proof Explorer


Theorem sbss

Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010) (Proof shortened by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion sbss ( [ 𝑦 / 𝑥 ] 𝑥𝐴𝑦𝐴 )

Proof

Step Hyp Ref Expression
1 sseq1 ( 𝑥 = 𝑧 → ( 𝑥𝐴𝑧𝐴 ) )
2 sseq1 ( 𝑧 = 𝑦 → ( 𝑧𝐴𝑦𝐴 ) )
3 1 2 sbievw2 ( [ 𝑦 / 𝑥 ] 𝑥𝐴𝑦𝐴 )