Description: Schroeder-Bernstein Theorem and its converse. (Contributed by NM, 8-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbthb | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ↔ 𝐴 ≈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbth | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) | |
| 2 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 3 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 4 | endom | ⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴 ) |
| 6 | 2 5 | jca | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ) |
| 7 | 1 6 | impbii | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ↔ 𝐴 ≈ 𝐵 ) |