Metamath Proof Explorer


Theorem sbthb

Description: Schroeder-Bernstein Theorem and its converse. (Contributed by NM, 8-Jun-1998)

Ref Expression
Assertion sbthb ( ( 𝐴𝐵𝐵𝐴 ) ↔ 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 sbth ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 )
2 endom ( 𝐴𝐵𝐴𝐵 )
3 ensym ( 𝐴𝐵𝐵𝐴 )
4 endom ( 𝐵𝐴𝐵𝐴 )
5 3 4 syl ( 𝐴𝐵𝐵𝐴 )
6 2 5 jca ( 𝐴𝐵 → ( 𝐴𝐵𝐵𝐴 ) )
7 1 6 impbii ( ( 𝐴𝐵𝐵𝐴 ) ↔ 𝐴𝐵 )