Metamath Proof Explorer


Theorem sbthcl

Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998)

Ref Expression
Assertion sbthcl ≈ = ( ≼ ∩ ≼ )

Proof

Step Hyp Ref Expression
1 relen Rel ≈
2 inss1 ( ≼ ∩ ≼ ) ⊆ ≼
3 reldom Rel ≼
4 relss ( ( ≼ ∩ ≼ ) ⊆ ≼ → ( Rel ≼ → Rel ( ≼ ∩ ≼ ) ) )
5 2 3 4 mp2 Rel ( ≼ ∩ ≼ )
6 brin ( 𝑥 ( ≼ ∩ ≼ ) 𝑦 ↔ ( 𝑥𝑦𝑥 𝑦 ) )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 brcnv ( 𝑥 𝑦𝑦𝑥 )
10 9 anbi2i ( ( 𝑥𝑦𝑥 𝑦 ) ↔ ( 𝑥𝑦𝑦𝑥 ) )
11 sbthb ( ( 𝑥𝑦𝑦𝑥 ) ↔ 𝑥𝑦 )
12 6 10 11 3bitrri ( 𝑥𝑦𝑥 ( ≼ ∩ ≼ ) 𝑦 )
13 1 5 12 eqbrriv ≈ = ( ≼ ∩ ≼ )