Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | ⊢ Rel ≈ | |
| 2 | inss1 | ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | relss | ⊢ ( ( ≼ ∩ ◡ ≼ ) ⊆ ≼ → ( Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ) ) ) | |
| 5 | 2 3 4 | mp2 | ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
| 6 | brin | ⊢ ( 𝑥 ( ≼ ∩ ◡ ≼ ) 𝑦 ↔ ( 𝑥 ≼ 𝑦 ∧ 𝑥 ◡ ≼ 𝑦 ) ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | brcnv | ⊢ ( 𝑥 ◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥 ) |
| 10 | 9 | anbi2i | ⊢ ( ( 𝑥 ≼ 𝑦 ∧ 𝑥 ◡ ≼ 𝑦 ) ↔ ( 𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥 ) ) |
| 11 | sbthb | ⊢ ( ( 𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥 ) ↔ 𝑥 ≈ 𝑦 ) | |
| 12 | 6 10 11 | 3bitrri | ⊢ ( 𝑥 ≈ 𝑦 ↔ 𝑥 ( ≼ ∩ ◡ ≼ ) 𝑦 ) |
| 13 | 1 5 12 | eqbrriv | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |