Metamath Proof Explorer


Theorem sbthfi

Description: Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth ). (Contributed by BTernaryTau, 4-Nov-2024)

Ref Expression
Assertion sbthfi ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex1i ( 𝐴𝐵𝐴 ∈ V )
3 1 brrelex1i ( 𝐵𝐴𝐵 ∈ V )
4 breq1 ( 𝑧 = 𝐴 → ( 𝑧𝑤𝐴𝑤 ) )
5 breq2 ( 𝑧 = 𝐴 → ( 𝑤𝑧𝑤𝐴 ) )
6 4 5 3anbi23d ( 𝑧 = 𝐴 → ( ( 𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧 ) ↔ ( 𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴 ) ) )
7 breq1 ( 𝑧 = 𝐴 → ( 𝑧𝑤𝐴𝑤 ) )
8 6 7 imbi12d ( 𝑧 = 𝐴 → ( ( ( 𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧 ) → 𝑧𝑤 ) ↔ ( ( 𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴 ) → 𝐴𝑤 ) ) )
9 eleq1 ( 𝑤 = 𝐵 → ( 𝑤 ∈ Fin ↔ 𝐵 ∈ Fin ) )
10 breq2 ( 𝑤 = 𝐵 → ( 𝐴𝑤𝐴𝐵 ) )
11 breq1 ( 𝑤 = 𝐵 → ( 𝑤𝐴𝐵𝐴 ) )
12 9 10 11 3anbi123d ( 𝑤 = 𝐵 → ( ( 𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴 ) ↔ ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) ) )
13 breq2 ( 𝑤 = 𝐵 → ( 𝐴𝑤𝐴𝐵 ) )
14 12 13 imbi12d ( 𝑤 = 𝐵 → ( ( ( 𝑤 ∈ Fin ∧ 𝐴𝑤𝑤𝐴 ) → 𝐴𝑤 ) ↔ ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 ) ) )
15 vex 𝑧 ∈ V
16 sseq1 ( 𝑦 = 𝑥 → ( 𝑦𝑧𝑥𝑧 ) )
17 imaeq2 ( 𝑦 = 𝑥 → ( 𝑓𝑦 ) = ( 𝑓𝑥 ) )
18 17 difeq2d ( 𝑦 = 𝑥 → ( 𝑤 ∖ ( 𝑓𝑦 ) ) = ( 𝑤 ∖ ( 𝑓𝑥 ) ) )
19 18 imaeq2d ( 𝑦 = 𝑥 → ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑦 ) ) ) = ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑥 ) ) ) )
20 difeq2 ( 𝑦 = 𝑥 → ( 𝑧𝑦 ) = ( 𝑧𝑥 ) )
21 19 20 sseq12d ( 𝑦 = 𝑥 → ( ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑦 ) ) ) ⊆ ( 𝑧𝑦 ) ↔ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝑧𝑥 ) ) )
22 16 21 anbi12d ( 𝑦 = 𝑥 → ( ( 𝑦𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑦 ) ) ) ⊆ ( 𝑧𝑦 ) ) ↔ ( 𝑥𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝑧𝑥 ) ) ) )
23 22 cbvabv { 𝑦 ∣ ( 𝑦𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑦 ) ) ) ⊆ ( 𝑧𝑦 ) ) } = { 𝑥 ∣ ( 𝑥𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝑧𝑥 ) ) }
24 eqid ( ( 𝑓 { 𝑦 ∣ ( 𝑦𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑦 ) ) ) ⊆ ( 𝑧𝑦 ) ) } ) ∪ ( 𝑔 ↾ ( 𝑧 { 𝑦 ∣ ( 𝑦𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑦 ) ) ) ⊆ ( 𝑧𝑦 ) ) } ) ) ) = ( ( 𝑓 { 𝑦 ∣ ( 𝑦𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑦 ) ) ) ⊆ ( 𝑧𝑦 ) ) } ) ∪ ( 𝑔 ↾ ( 𝑧 { 𝑦 ∣ ( 𝑦𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓𝑦 ) ) ) ⊆ ( 𝑧𝑦 ) ) } ) ) )
25 vex 𝑤 ∈ V
26 15 23 24 25 sbthfilem ( ( 𝑤 ∈ Fin ∧ 𝑧𝑤𝑤𝑧 ) → 𝑧𝑤 )
27 8 14 26 vtocl2g ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 ) )
28 2 3 27 syl2an ( ( 𝐴𝐵𝐵𝐴 ) → ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 ) )
29 28 3adant1 ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) → ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 ) )
30 29 pm2.43i ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 )