Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
⊢ Rel ≼ |
2 |
1
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
3 |
1
|
brrelex1i |
⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
4 |
|
breq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤 ) ) |
5 |
|
breq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴 ) ) |
6 |
4 5
|
3anbi23d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧 ) ↔ ( 𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴 ) ) ) |
7 |
|
breq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤 ) ) |
8 |
6 7
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧 ) → 𝑧 ≈ 𝑤 ) ↔ ( ( 𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴 ) → 𝐴 ≈ 𝑤 ) ) ) |
9 |
|
eleq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
10 |
|
breq2 |
⊢ ( 𝑤 = 𝐵 → ( 𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵 ) ) |
11 |
|
breq1 |
⊢ ( 𝑤 = 𝐵 → ( 𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴 ) ) |
12 |
9 10 11
|
3anbi123d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴 ) ↔ ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ) ) |
13 |
|
breq2 |
⊢ ( 𝑤 = 𝐵 → ( 𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵 ) ) |
14 |
12 13
|
imbi12d |
⊢ ( 𝑤 = 𝐵 → ( ( ( 𝑤 ∈ Fin ∧ 𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴 ) → 𝐴 ≈ 𝑤 ) ↔ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) ) ) |
15 |
|
vex |
⊢ 𝑧 ∈ V |
16 |
|
sseq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧 ) ) |
17 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ 𝑥 ) ) |
18 |
17
|
difeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) = ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) |
19 |
18
|
imaeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) = ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) ) |
20 |
|
difeq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 ∖ 𝑦 ) = ( 𝑧 ∖ 𝑥 ) ) |
21 |
19 20
|
sseq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ↔ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝑧 ∖ 𝑥 ) ) ) |
22 |
16 21
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) ↔ ( 𝑥 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝑧 ∖ 𝑥 ) ) ) ) |
23 |
22
|
cbvabv |
⊢ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } = { 𝑥 ∣ ( 𝑥 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝑧 ∖ 𝑥 ) ) } |
24 |
|
eqid |
⊢ ( ( 𝑓 ↾ ∪ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } ) ∪ ( ◡ 𝑔 ↾ ( 𝑧 ∖ ∪ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } ) ) ) = ( ( 𝑓 ↾ ∪ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } ) ∪ ( ◡ 𝑔 ↾ ( 𝑧 ∖ ∪ { 𝑦 ∣ ( 𝑦 ⊆ 𝑧 ∧ ( 𝑔 “ ( 𝑤 ∖ ( 𝑓 “ 𝑦 ) ) ) ⊆ ( 𝑧 ∖ 𝑦 ) ) } ) ) ) |
25 |
|
vex |
⊢ 𝑤 ∈ V |
26 |
15 23 24 25
|
sbthfilem |
⊢ ( ( 𝑤 ∈ Fin ∧ 𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧 ) → 𝑧 ≈ 𝑤 ) |
27 |
8 14 26
|
vtocl2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) ) |
28 |
2 3 27
|
syl2an |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) ) |
29 |
28
|
3adant1 |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) ) |
30 |
29
|
pm2.43i |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) |