| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbthlem.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sbthlem.2 |
⊢ 𝐷 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 “ 𝑥 ) ) ) ⊆ ( 𝐴 ∖ 𝑥 ) ) } |
| 3 |
|
sbthlem.3 |
⊢ 𝐻 = ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) |
| 4 |
|
sbthlem.4 |
⊢ 𝐵 ∈ V |
| 5 |
4
|
brdom |
⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 6 |
1
|
brdom |
⊢ ( 𝐵 ≼ 𝐴 ↔ ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 ) |
| 7 |
5 6
|
anbi12i |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 ) ) |
| 8 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ∧ ∃ 𝑔 𝑔 : 𝐵 –1-1→ 𝐴 ) ) |
| 9 |
7 8
|
bitr4i |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ↔ ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) ) |
| 10 |
|
vex |
⊢ 𝑓 ∈ V |
| 11 |
10
|
resex |
⊢ ( 𝑓 ↾ ∪ 𝐷 ) ∈ V |
| 12 |
|
vex |
⊢ 𝑔 ∈ V |
| 13 |
12
|
cnvex |
⊢ ◡ 𝑔 ∈ V |
| 14 |
13
|
resex |
⊢ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ∈ V |
| 15 |
11 14
|
unex |
⊢ ( ( 𝑓 ↾ ∪ 𝐷 ) ∪ ( ◡ 𝑔 ↾ ( 𝐴 ∖ ∪ 𝐷 ) ) ) ∈ V |
| 16 |
3 15
|
eqeltri |
⊢ 𝐻 ∈ V |
| 17 |
1 2 3
|
sbthlem9 |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 18 |
|
f1oen3g |
⊢ ( ( 𝐻 ∈ V ∧ 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| 19 |
16 17 18
|
sylancr |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 20 |
19
|
exlimivv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑔 : 𝐵 –1-1→ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 21 |
9 20
|
sylbi |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≈ 𝐵 ) |