Metamath Proof Explorer


Theorem sbthlem4

Description: Lemma for sbth . (Contributed by NM, 27-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) }
Assertion sbthlem4 ( ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴 ) ∧ Fun 𝑔 ) → ( 𝑔 “ ( 𝐴 𝐷 ) ) = ( 𝐵 ∖ ( 𝑓 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 sbthlem.1 𝐴 ∈ V
2 sbthlem.2 𝐷 = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) }
3 df-ima ( 𝑔 “ ( 𝐴 𝐷 ) ) = ran ( 𝑔 ↾ ( 𝐴 𝐷 ) )
4 difss ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ⊆ 𝐵
5 sseq2 ( dom 𝑔 = 𝐵 → ( ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ⊆ dom 𝑔 ↔ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ⊆ 𝐵 ) )
6 4 5 mpbiri ( dom 𝑔 = 𝐵 → ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ⊆ dom 𝑔 )
7 ssdmres ( ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ⊆ dom 𝑔 ↔ dom ( 𝑔 ↾ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) = ( 𝐵 ∖ ( 𝑓 𝐷 ) ) )
8 6 7 sylib ( dom 𝑔 = 𝐵 → dom ( 𝑔 ↾ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) = ( 𝐵 ∖ ( 𝑓 𝐷 ) ) )
9 dfdm4 dom ( 𝑔 ↾ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) = ran ( 𝑔 ↾ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) )
10 8 9 eqtr3di ( dom 𝑔 = 𝐵 → ( 𝐵 ∖ ( 𝑓 𝐷 ) ) = ran ( 𝑔 ↾ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) )
11 funcnvres ( Fun 𝑔 ( 𝑔 ↾ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) = ( 𝑔 ↾ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) )
12 1 2 sbthlem3 ( ran 𝑔𝐴 → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) = ( 𝐴 𝐷 ) )
13 12 reseq2d ( ran 𝑔𝐴 → ( 𝑔 ↾ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) = ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
14 11 13 sylan9eqr ( ( ran 𝑔𝐴 ∧ Fun 𝑔 ) → ( 𝑔 ↾ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) = ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
15 14 rneqd ( ( ran 𝑔𝐴 ∧ Fun 𝑔 ) → ran ( 𝑔 ↾ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) = ran ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
16 10 15 sylan9eq ( ( dom 𝑔 = 𝐵 ∧ ( ran 𝑔𝐴 ∧ Fun 𝑔 ) ) → ( 𝐵 ∖ ( 𝑓 𝐷 ) ) = ran ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
17 16 anassrs ( ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴 ) ∧ Fun 𝑔 ) → ( 𝐵 ∖ ( 𝑓 𝐷 ) ) = ran ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
18 3 17 eqtr4id ( ( ( dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴 ) ∧ Fun 𝑔 ) → ( 𝑔 “ ( 𝐴 𝐷 ) ) = ( 𝐵 ∖ ( 𝑓 𝐷 ) ) )