Metamath Proof Explorer


Theorem sbthlem5

Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) }
sbthlem.3 𝐻 = ( ( 𝑓 𝐷 ) ∪ ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
Assertion sbthlem5 ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴 ) → dom 𝐻 = 𝐴 )

Proof

Step Hyp Ref Expression
1 sbthlem.1 𝐴 ∈ V
2 sbthlem.2 𝐷 = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓𝑥 ) ) ) ⊆ ( 𝐴𝑥 ) ) }
3 sbthlem.3 𝐻 = ( ( 𝑓 𝐷 ) ∪ ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
4 3 dmeqi dom 𝐻 = dom ( ( 𝑓 𝐷 ) ∪ ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
5 dmun dom ( ( 𝑓 𝐷 ) ∪ ( 𝑔 ↾ ( 𝐴 𝐷 ) ) ) = ( dom ( 𝑓 𝐷 ) ∪ dom ( 𝑔 ↾ ( 𝐴 𝐷 ) ) )
6 dmres dom ( 𝑓 𝐷 ) = ( 𝐷 ∩ dom 𝑓 )
7 dmres dom ( 𝑔 ↾ ( 𝐴 𝐷 ) ) = ( ( 𝐴 𝐷 ) ∩ dom 𝑔 )
8 df-rn ran 𝑔 = dom 𝑔
9 8 eqcomi dom 𝑔 = ran 𝑔
10 9 ineq2i ( ( 𝐴 𝐷 ) ∩ dom 𝑔 ) = ( ( 𝐴 𝐷 ) ∩ ran 𝑔 )
11 7 10 eqtri dom ( 𝑔 ↾ ( 𝐴 𝐷 ) ) = ( ( 𝐴 𝐷 ) ∩ ran 𝑔 )
12 6 11 uneq12i ( dom ( 𝑓 𝐷 ) ∪ dom ( 𝑔 ↾ ( 𝐴 𝐷 ) ) ) = ( ( 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 𝐷 ) ∩ ran 𝑔 ) )
13 5 12 eqtri dom ( ( 𝑓 𝐷 ) ∪ ( 𝑔 ↾ ( 𝐴 𝐷 ) ) ) = ( ( 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 𝐷 ) ∩ ran 𝑔 ) )
14 4 13 eqtri dom 𝐻 = ( ( 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 𝐷 ) ∩ ran 𝑔 ) )
15 1 2 sbthlem1 𝐷 ⊆ ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) )
16 difss ( 𝐴 ∖ ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ) ⊆ 𝐴
17 15 16 sstri 𝐷𝐴
18 sseq2 ( dom 𝑓 = 𝐴 → ( 𝐷 ⊆ dom 𝑓 𝐷𝐴 ) )
19 17 18 mpbiri ( dom 𝑓 = 𝐴 𝐷 ⊆ dom 𝑓 )
20 dfss ( 𝐷 ⊆ dom 𝑓 𝐷 = ( 𝐷 ∩ dom 𝑓 ) )
21 19 20 sylib ( dom 𝑓 = 𝐴 𝐷 = ( 𝐷 ∩ dom 𝑓 ) )
22 21 uneq1d ( dom 𝑓 = 𝐴 → ( 𝐷 ∪ ( 𝐴 𝐷 ) ) = ( ( 𝐷 ∩ dom 𝑓 ) ∪ ( 𝐴 𝐷 ) ) )
23 1 2 sbthlem3 ( ran 𝑔𝐴 → ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) = ( 𝐴 𝐷 ) )
24 imassrn ( 𝑔 “ ( 𝐵 ∖ ( 𝑓 𝐷 ) ) ) ⊆ ran 𝑔
25 23 24 eqsstrrdi ( ran 𝑔𝐴 → ( 𝐴 𝐷 ) ⊆ ran 𝑔 )
26 dfss ( ( 𝐴 𝐷 ) ⊆ ran 𝑔 ↔ ( 𝐴 𝐷 ) = ( ( 𝐴 𝐷 ) ∩ ran 𝑔 ) )
27 25 26 sylib ( ran 𝑔𝐴 → ( 𝐴 𝐷 ) = ( ( 𝐴 𝐷 ) ∩ ran 𝑔 ) )
28 27 uneq2d ( ran 𝑔𝐴 → ( ( 𝐷 ∩ dom 𝑓 ) ∪ ( 𝐴 𝐷 ) ) = ( ( 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 𝐷 ) ∩ ran 𝑔 ) ) )
29 22 28 sylan9eq ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴 ) → ( 𝐷 ∪ ( 𝐴 𝐷 ) ) = ( ( 𝐷 ∩ dom 𝑓 ) ∪ ( ( 𝐴 𝐷 ) ∩ ran 𝑔 ) ) )
30 14 29 eqtr4id ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴 ) → dom 𝐻 = ( 𝐷 ∪ ( 𝐴 𝐷 ) ) )
31 undif ( 𝐷𝐴 ↔ ( 𝐷 ∪ ( 𝐴 𝐷 ) ) = 𝐴 )
32 17 31 mpbi ( 𝐷 ∪ ( 𝐴 𝐷 ) ) = 𝐴
33 30 32 eqtrdi ( ( dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴 ) → dom 𝐻 = 𝐴 )