| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbthlem.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | sbthlem.2 | ⊢ 𝐷  =  { 𝑥  ∣  ( 𝑥  ⊆  𝐴  ∧  ( 𝑔  “  ( 𝐵  ∖  ( 𝑓  “  𝑥 ) ) )  ⊆  ( 𝐴  ∖  𝑥 ) ) } | 
						
							| 3 |  | sbthlem.3 | ⊢ 𝐻  =  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 4 | 3 | dmeqi | ⊢ dom  𝐻  =  dom  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 5 |  | dmun | ⊢ dom  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  =  ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∪  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 6 |  | dmres | ⊢ dom  ( 𝑓  ↾  ∪  𝐷 )  =  ( ∪  𝐷  ∩  dom  𝑓 ) | 
						
							| 7 |  | dmres | ⊢ dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) )  =  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  dom  ◡ 𝑔 ) | 
						
							| 8 |  | df-rn | ⊢ ran  𝑔  =  dom  ◡ 𝑔 | 
						
							| 9 | 8 | eqcomi | ⊢ dom  ◡ 𝑔  =  ran  𝑔 | 
						
							| 10 | 9 | ineq2i | ⊢ ( ( 𝐴  ∖  ∪  𝐷 )  ∩  dom  ◡ 𝑔 )  =  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) | 
						
							| 11 | 7 10 | eqtri | ⊢ dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) )  =  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) | 
						
							| 12 | 6 11 | uneq12i | ⊢ ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∪  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  =  ( ( ∪  𝐷  ∩  dom  𝑓 )  ∪  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) ) | 
						
							| 13 | 5 12 | eqtri | ⊢ dom  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  =  ( ( ∪  𝐷  ∩  dom  𝑓 )  ∪  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) ) | 
						
							| 14 | 4 13 | eqtri | ⊢ dom  𝐻  =  ( ( ∪  𝐷  ∩  dom  𝑓 )  ∪  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) ) | 
						
							| 15 | 1 2 | sbthlem1 | ⊢ ∪  𝐷  ⊆  ( 𝐴  ∖  ( 𝑔  “  ( 𝐵  ∖  ( 𝑓  “  ∪  𝐷 ) ) ) ) | 
						
							| 16 |  | difss | ⊢ ( 𝐴  ∖  ( 𝑔  “  ( 𝐵  ∖  ( 𝑓  “  ∪  𝐷 ) ) ) )  ⊆  𝐴 | 
						
							| 17 | 15 16 | sstri | ⊢ ∪  𝐷  ⊆  𝐴 | 
						
							| 18 |  | sseq2 | ⊢ ( dom  𝑓  =  𝐴  →  ( ∪  𝐷  ⊆  dom  𝑓  ↔  ∪  𝐷  ⊆  𝐴 ) ) | 
						
							| 19 | 17 18 | mpbiri | ⊢ ( dom  𝑓  =  𝐴  →  ∪  𝐷  ⊆  dom  𝑓 ) | 
						
							| 20 |  | dfss | ⊢ ( ∪  𝐷  ⊆  dom  𝑓  ↔  ∪  𝐷  =  ( ∪  𝐷  ∩  dom  𝑓 ) ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( dom  𝑓  =  𝐴  →  ∪  𝐷  =  ( ∪  𝐷  ∩  dom  𝑓 ) ) | 
						
							| 22 | 21 | uneq1d | ⊢ ( dom  𝑓  =  𝐴  →  ( ∪  𝐷  ∪  ( 𝐴  ∖  ∪  𝐷 ) )  =  ( ( ∪  𝐷  ∩  dom  𝑓 )  ∪  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 23 | 1 2 | sbthlem3 | ⊢ ( ran  𝑔  ⊆  𝐴  →  ( 𝑔  “  ( 𝐵  ∖  ( 𝑓  “  ∪  𝐷 ) ) )  =  ( 𝐴  ∖  ∪  𝐷 ) ) | 
						
							| 24 |  | imassrn | ⊢ ( 𝑔  “  ( 𝐵  ∖  ( 𝑓  “  ∪  𝐷 ) ) )  ⊆  ran  𝑔 | 
						
							| 25 | 23 24 | eqsstrrdi | ⊢ ( ran  𝑔  ⊆  𝐴  →  ( 𝐴  ∖  ∪  𝐷 )  ⊆  ran  𝑔 ) | 
						
							| 26 |  | dfss | ⊢ ( ( 𝐴  ∖  ∪  𝐷 )  ⊆  ran  𝑔  ↔  ( 𝐴  ∖  ∪  𝐷 )  =  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( ran  𝑔  ⊆  𝐴  →  ( 𝐴  ∖  ∪  𝐷 )  =  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) ) | 
						
							| 28 | 27 | uneq2d | ⊢ ( ran  𝑔  ⊆  𝐴  →  ( ( ∪  𝐷  ∩  dom  𝑓 )  ∪  ( 𝐴  ∖  ∪  𝐷 ) )  =  ( ( ∪  𝐷  ∩  dom  𝑓 )  ∪  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) ) ) | 
						
							| 29 | 22 28 | sylan9eq | ⊢ ( ( dom  𝑓  =  𝐴  ∧  ran  𝑔  ⊆  𝐴 )  →  ( ∪  𝐷  ∪  ( 𝐴  ∖  ∪  𝐷 ) )  =  ( ( ∪  𝐷  ∩  dom  𝑓 )  ∪  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  ran  𝑔 ) ) ) | 
						
							| 30 | 14 29 | eqtr4id | ⊢ ( ( dom  𝑓  =  𝐴  ∧  ran  𝑔  ⊆  𝐴 )  →  dom  𝐻  =  ( ∪  𝐷  ∪  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 31 |  | undif | ⊢ ( ∪  𝐷  ⊆  𝐴  ↔  ( ∪  𝐷  ∪  ( 𝐴  ∖  ∪  𝐷 ) )  =  𝐴 ) | 
						
							| 32 | 17 31 | mpbi | ⊢ ( ∪  𝐷  ∪  ( 𝐴  ∖  ∪  𝐷 ) )  =  𝐴 | 
						
							| 33 | 30 32 | eqtrdi | ⊢ ( ( dom  𝑓  =  𝐴  ∧  ran  𝑔  ⊆  𝐴 )  →  dom  𝐻  =  𝐴 ) |