| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbthlem.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | sbthlem.2 | ⊢ 𝐷  =  { 𝑥  ∣  ( 𝑥  ⊆  𝐴  ∧  ( 𝑔  “  ( 𝐵  ∖  ( 𝑓  “  𝑥 ) ) )  ⊆  ( 𝐴  ∖  𝑥 ) ) } | 
						
							| 3 |  | sbthlem.3 | ⊢ 𝐻  =  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 4 |  | funres | ⊢ ( Fun  𝑓  →  Fun  ( 𝑓  ↾  ∪  𝐷 ) ) | 
						
							| 5 |  | funres | ⊢ ( Fun  ◡ 𝑔  →  Fun  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 6 |  | dmres | ⊢ dom  ( 𝑓  ↾  ∪  𝐷 )  =  ( ∪  𝐷  ∩  dom  𝑓 ) | 
						
							| 7 |  | inss1 | ⊢ ( ∪  𝐷  ∩  dom  𝑓 )  ⊆  ∪  𝐷 | 
						
							| 8 | 6 7 | eqsstri | ⊢ dom  ( 𝑓  ↾  ∪  𝐷 )  ⊆  ∪  𝐷 | 
						
							| 9 |  | ssrin | ⊢ ( dom  ( 𝑓  ↾  ∪  𝐷 )  ⊆  ∪  𝐷  →  ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ⊆  ( ∪  𝐷  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ⊆  ( ∪  𝐷  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 11 |  | dmres | ⊢ dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) )  =  ( ( 𝐴  ∖  ∪  𝐷 )  ∩  dom  ◡ 𝑔 ) | 
						
							| 12 |  | inss1 | ⊢ ( ( 𝐴  ∖  ∪  𝐷 )  ∩  dom  ◡ 𝑔 )  ⊆  ( 𝐴  ∖  ∪  𝐷 ) | 
						
							| 13 | 11 12 | eqsstri | ⊢ dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) )  ⊆  ( 𝐴  ∖  ∪  𝐷 ) | 
						
							| 14 |  | sslin | ⊢ ( dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) )  ⊆  ( 𝐴  ∖  ∪  𝐷 )  →  ( ∪  𝐷  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ⊆  ( ∪  𝐷  ∩  ( 𝐴  ∖  ∪  𝐷 ) ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( ∪  𝐷  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ⊆  ( ∪  𝐷  ∩  ( 𝐴  ∖  ∪  𝐷 ) ) | 
						
							| 16 | 10 15 | sstri | ⊢ ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ⊆  ( ∪  𝐷  ∩  ( 𝐴  ∖  ∪  𝐷 ) ) | 
						
							| 17 |  | disjdif | ⊢ ( ∪  𝐷  ∩  ( 𝐴  ∖  ∪  𝐷 ) )  =  ∅ | 
						
							| 18 | 16 17 | sseqtri | ⊢ ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ⊆  ∅ | 
						
							| 19 |  | ss0 | ⊢ ( ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ⊆  ∅  →  ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  =  ∅ ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  =  ∅ | 
						
							| 21 |  | funun | ⊢ ( ( ( Fun  ( 𝑓  ↾  ∪  𝐷 )  ∧  Fun  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  ∧  ( dom  ( 𝑓  ↾  ∪  𝐷 )  ∩  dom  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  =  ∅ )  →  Fun  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) ) | 
						
							| 22 | 20 21 | mpan2 | ⊢ ( ( Fun  ( 𝑓  ↾  ∪  𝐷 )  ∧  Fun  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) )  →  Fun  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) ) | 
						
							| 23 | 4 5 22 | syl2an | ⊢ ( ( Fun  𝑓  ∧  Fun  ◡ 𝑔 )  →  Fun  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) ) | 
						
							| 24 | 3 | funeqi | ⊢ ( Fun  𝐻  ↔  Fun  ( ( 𝑓  ↾  ∪  𝐷 )  ∪  ( ◡ 𝑔  ↾  ( 𝐴  ∖  ∪  𝐷 ) ) ) ) | 
						
							| 25 | 23 24 | sylibr | ⊢ ( ( Fun  𝑓  ∧  Fun  ◡ 𝑔 )  →  Fun  𝐻 ) |