| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolsca.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
ovolsca.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 3 |
|
ovolsca.3 |
⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) |
| 4 |
1
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
| 5 |
4
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) |
| 7 |
6
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ↔ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) ) |
| 8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ∈ ℝ+ ) |
| 9 |
8
|
rprecred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 1 / 𝐶 ) ∈ ℝ ) |
| 10 |
|
remulcl |
⊢ ( ( ( 1 / 𝐶 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 1 / 𝐶 ) · 𝑦 ) ∈ ℝ ) |
| 11 |
9 10
|
sylancom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 1 / 𝐶 ) · 𝑦 ) ∈ ℝ ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = ( ( 1 / 𝐶 ) · 𝑦 ) → ( 𝐶 · 𝑥 ) = ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ) |
| 13 |
12
|
eleq1d |
⊢ ( 𝑥 = ( ( 1 / 𝐶 ) · 𝑦 ) → ( ( 𝐶 · 𝑥 ) ∈ 𝐴 ↔ ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ∈ 𝐴 ) ) |
| 14 |
13
|
elrab3 |
⊢ ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ ℝ → ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ↔ ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ∈ 𝐴 ) ) |
| 15 |
11 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ↔ ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ∈ 𝐴 ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 18 |
8
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 19 |
8
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐶 ≠ 0 ) |
| 20 |
17 18 19
|
divrec2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 / 𝐶 ) = ( ( 1 / 𝐶 ) · 𝑦 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · ( 𝑦 / 𝐶 ) ) = ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ) |
| 22 |
17 18 19
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · ( 𝑦 / 𝐶 ) ) = 𝑦 ) |
| 23 |
21 22
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) = 𝑦 ) |
| 24 |
23
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝐶 · ( ( 1 / 𝐶 ) · 𝑦 ) ) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 25 |
7 15 24
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴 ) ) |
| 26 |
25
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ∧ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 27 |
5 26
|
bitr4d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ) ) ) |
| 28 |
27
|
eqabdv |
⊢ ( 𝜑 → 𝐴 = { 𝑦 ∣ ( 𝑦 ∈ ℝ ∧ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ) } ) |
| 29 |
|
df-rab |
⊢ { 𝑦 ∈ ℝ ∣ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 } = { 𝑦 ∣ ( 𝑦 ∈ ℝ ∧ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 ) } |
| 30 |
28 29
|
eqtr4di |
⊢ ( 𝜑 → 𝐴 = { 𝑦 ∈ ℝ ∣ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 } ) |