Metamath Proof Explorer
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
scaffval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
|
|
scaffval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
scaffval.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
|
scaffval.a |
⊢ ∙ = ( ·sf ‘ 𝑊 ) |
|
Assertion |
scaffn |
⊢ ∙ Fn ( 𝐾 × 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
scaffval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
scaffval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
scaffval.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
4 |
|
scaffval.a |
⊢ ∙ = ( ·sf ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
scaffval |
⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
7 |
|
ovex |
⊢ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ V |
8 |
6 7
|
fnmpoi |
⊢ ∙ Fn ( 𝐾 × 𝐵 ) |