Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scaffval.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
scaffval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
scaffval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
scaffval.a | ⊢ ∙ = ( ·sf ‘ 𝑊 ) | ||
scaffval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
Assertion | scafval | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∙ 𝑌 ) = ( 𝑋 · 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
2 | scaffval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
3 | scaffval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
4 | scaffval.a | ⊢ ∙ = ( ·sf ‘ 𝑊 ) | |
5 | scaffval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
6 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) | |
7 | 1 2 3 4 5 | scaffval | ⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) |
8 | ovex | ⊢ ( 𝑋 · 𝑌 ) ∈ V | |
9 | 6 7 8 | ovmpoa | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∙ 𝑌 ) = ( 𝑋 · 𝑌 ) ) |