Metamath Proof Explorer


Theorem scandxnbasendx

Description: The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024)

Ref Expression
Assertion scandxnbasendx ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 1lt5 1 < 5
3 1 2 gtneii 5 ≠ 1
4 scandx ( Scalar ‘ ndx ) = 5
5 basendx ( Base ‘ ndx ) = 1
6 4 5 neeq12i ( ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx ) ↔ 5 ≠ 1 )
7 3 6 mpbir ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx )