Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
scmatrhmval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
scmatrhmval.o |
⊢ 1 = ( 1r ‘ 𝐴 ) |
4 |
|
scmatrhmval.t |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
5 |
|
scmatrhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) |
6 |
|
scmatrhmval.c |
⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) |
7 |
1 2 3 4 5 6
|
scmatf1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 –1-1→ 𝐶 ) |
8 |
1 2 3 4 5 6
|
scmatfo |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 –onto→ 𝐶 ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 –onto→ 𝐶 ) |
10 |
|
df-f1o |
⊢ ( 𝐹 : 𝐾 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐾 –1-1→ 𝐶 ∧ 𝐹 : 𝐾 –onto→ 𝐶 ) ) |
11 |
7 9 10
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 –1-1-onto→ 𝐶 ) |