Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
scmatrhmval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
scmatrhmval.o |
⊢ 1 = ( 1r ‘ 𝐴 ) |
4 |
|
scmatrhmval.t |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
5 |
|
scmatrhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) |
6 |
|
scmatrhmval.c |
⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) |
7 |
|
scmatghm.s |
⊢ 𝑆 = ( 𝐴 ↾s 𝐶 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
11 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
12 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Grp ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
15 |
2 13 1 14 6
|
scmatsgrp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ ( SubGrp ‘ 𝐴 ) ) |
16 |
7
|
subggrp |
⊢ ( 𝐶 ∈ ( SubGrp ‘ 𝐴 ) → 𝑆 ∈ Grp ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ Grp ) |
18 |
1 2 3 4 5 6
|
scmatf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 ⟶ 𝐶 ) |
19 |
2 6 7
|
scmatstrbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑆 ) = 𝐶 ) |
20 |
19
|
feq3d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ↔ 𝐹 : 𝐾 ⟶ 𝐶 ) ) |
21 |
18 20
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 : 𝐾 ⟶ ( Base ‘ 𝑆 ) ) |
22 |
2
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
23 |
6
|
ovexi |
⊢ 𝐶 ∈ V |
24 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
25 |
7 24
|
resssca |
⊢ ( 𝐶 ∈ V → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑆 ) ) |
26 |
23 25
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑆 ) ) |
27 |
22 26
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( Scalar ‘ 𝑆 ) ) ) |
29 |
28
|
oveqd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) = ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 ) ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∗ 1 ) = ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 ) ∗ 1 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∗ 1 ) = ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 ) ∗ 1 ) ) |
32 |
2
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod ) |
33 |
2 6
|
scmatlss |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ ( LSubSp ‘ 𝐴 ) ) |
34 |
|
eqid |
⊢ ( LSubSp ‘ 𝐴 ) = ( LSubSp ‘ 𝐴 ) |
35 |
7 34
|
lsslmod |
⊢ ( ( 𝐴 ∈ LMod ∧ 𝐶 ∈ ( LSubSp ‘ 𝐴 ) ) → 𝑆 ∈ LMod ) |
36 |
32 33 35
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ LMod ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 𝑆 ∈ LMod ) |
38 |
27
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
39 |
1 38
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
40 |
39
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
41 |
40
|
biimpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑦 ∈ 𝐾 → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
42 |
41
|
adantrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
43 |
42
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
44 |
39
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑧 ∈ 𝐾 ↔ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
45 |
44
|
biimpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑧 ∈ 𝐾 → 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
46 |
45
|
adantld |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) → 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
47 |
46
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
48 |
2 13 1 14 6
|
scmatid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) ∈ 𝐶 ) |
49 |
3
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 1 = ( 1r ‘ 𝐴 ) ) |
50 |
48 49 19
|
3eltr4d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 1 ∈ ( Base ‘ 𝑆 ) ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 1 ∈ ( Base ‘ 𝑆 ) ) |
52 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
53 |
7 4
|
ressvsca |
⊢ ( 𝐶 ∈ V → ∗ = ( ·𝑠 ‘ 𝑆 ) ) |
54 |
23 53
|
ax-mp |
⊢ ∗ = ( ·𝑠 ‘ 𝑆 ) |
55 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
56 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑆 ) ) = ( +g ‘ ( Scalar ‘ 𝑆 ) ) |
57 |
8 10 52 54 55 56
|
lmodvsdir |
⊢ ( ( 𝑆 ∈ LMod ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 1 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 ) ∗ 1 ) = ( ( 𝑦 ∗ 1 ) ( +g ‘ 𝑆 ) ( 𝑧 ∗ 1 ) ) ) |
58 |
37 43 47 51 57
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑆 ) ) 𝑧 ) ∗ 1 ) = ( ( 𝑦 ∗ 1 ) ( +g ‘ 𝑆 ) ( 𝑧 ∗ 1 ) ) ) |
59 |
31 58
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∗ 1 ) = ( ( 𝑦 ∗ 1 ) ( +g ‘ 𝑆 ) ( 𝑧 ∗ 1 ) ) ) |
60 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → 𝑅 ∈ Ring ) |
62 |
60
|
anim1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) ) |
63 |
|
3anass |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ↔ ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) ) |
64 |
62 63
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) |
65 |
1 9
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐾 ) |
66 |
64 65
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐾 ) |
67 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∗ 1 ) ) |
68 |
61 66 67
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ∗ 1 ) ) |
69 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ∗ 1 ) ) |
70 |
69
|
ad2ant2lr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ∗ 1 ) ) |
71 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 ∗ 1 ) ) |
72 |
71
|
ad2ant2l |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 ∗ 1 ) ) |
73 |
70 72
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑦 ∗ 1 ) ( +g ‘ 𝑆 ) ( 𝑧 ∗ 1 ) ) ) |
74 |
59 68 73
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾 ) ) → ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
75 |
1 8 9 10 12 17 21 74
|
isghmd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |