Metamath Proof Explorer


Theorem scmatid

Description: The identity matrix is a scalar matrix. (Contributed by AV, 20-Aug-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatid.b 𝐵 = ( Base ‘ 𝐴 )
scmatid.e 𝐸 = ( Base ‘ 𝑅 )
scmatid.0 0 = ( 0g𝑅 )
scmatid.s 𝑆 = ( 𝑁 ScMat 𝑅 )
Assertion scmatid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 scmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 scmatid.b 𝐵 = ( Base ‘ 𝐴 )
3 scmatid.e 𝐸 = ( Base ‘ 𝑅 )
4 scmatid.0 0 = ( 0g𝑅 )
5 scmatid.s 𝑆 = ( 𝑁 ScMat 𝑅 )
6 1 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
7 eqid ( 1r𝐴 ) = ( 1r𝐴 )
8 2 7 ringidcl ( 𝐴 ∈ Ring → ( 1r𝐴 ) ∈ 𝐵 )
9 6 8 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) ∈ 𝐵 )
10 1 matsca2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) )
11 10 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝐴 ) = 𝑅 )
12 11 fveq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ ( Scalar ‘ 𝐴 ) ) = ( 1r𝑅 ) )
13 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
14 eqid ( 1r𝑅 ) = ( 1r𝑅 )
15 13 14 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
16 15 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
17 12 16 eqeltrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∈ ( Base ‘ 𝑅 ) )
18 oveq1 ( 𝑐 = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) → ( 𝑐 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ( ·𝑠𝐴 ) ( 1r𝐴 ) ) )
19 18 eqeq2d ( 𝑐 = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) → ( ( 1r𝐴 ) = ( 𝑐 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ↔ ( 1r𝐴 ) = ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ) )
20 19 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑐 = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) → ( ( 1r𝐴 ) = ( 𝑐 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ↔ ( 1r𝐴 ) = ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ) )
21 1 matlmod ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod )
22 eqid ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 )
23 eqid ( ·𝑠𝐴 ) = ( ·𝑠𝐴 )
24 eqid ( 1r ‘ ( Scalar ‘ 𝐴 ) ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) )
25 2 22 23 24 lmodvs1 ( ( 𝐴 ∈ LMod ∧ ( 1r𝐴 ) ∈ 𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ( ·𝑠𝐴 ) ( 1r𝐴 ) ) = ( 1r𝐴 ) )
26 21 9 25 syl2anc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ( ·𝑠𝐴 ) ( 1r𝐴 ) ) = ( 1r𝐴 ) )
27 26 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) = ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ( ·𝑠𝐴 ) ( 1r𝐴 ) ) )
28 17 20 27 rspcedvd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 1r𝐴 ) = ( 𝑐 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) )
29 13 1 2 7 23 5 scmatel ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 1r𝐴 ) ∈ 𝑆 ↔ ( ( 1r𝐴 ) ∈ 𝐵 ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) ( 1r𝐴 ) = ( 𝑐 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ) ) )
30 9 28 29 mpbir2and ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) ∈ 𝑆 )