Step |
Hyp |
Ref |
Expression |
1 |
|
scmatlss.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
scmatlss.s |
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) |
3 |
1
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
4 |
|
eqidd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
5 |
|
eqidd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) ) |
6 |
|
eqidd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) ) |
7 |
|
eqidd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) ) |
8 |
|
eqidd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( LSubSp ‘ 𝐴 ) = ( LSubSp ‘ 𝐴 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
12 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
13 |
9 1 10 11 12 2
|
scmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 = { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) } ) |
14 |
|
ssrab2 |
⊢ { 𝑚 ∈ ( Base ‘ 𝐴 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) } ⊆ ( Base ‘ 𝐴 ) |
15 |
13 14
|
eqsstrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ⊆ ( Base ‘ 𝐴 ) ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
17 |
1 10 9 16 2
|
scmatid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) ∈ 𝑆 ) |
18 |
17
|
ne0d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ≠ ∅ ) |
19 |
9 1 2 12
|
smatvscl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑥 ) ∈ 𝑆 ) |
20 |
19
|
3adantr3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑥 ) ∈ 𝑆 ) |
21 |
|
simpr3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
22 |
20 21
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑥 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) |
23 |
1 10 9 16 2
|
scmataddcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑥 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑥 ) ( +g ‘ 𝐴 ) 𝑦 ) ∈ 𝑆 ) |
24 |
22 23
|
syldan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝐴 ) 𝑥 ) ( +g ‘ 𝐴 ) 𝑦 ) ∈ 𝑆 ) |
25 |
3 4 5 6 7 8 15 18 24
|
islssd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( LSubSp ‘ 𝐴 ) ) |