Metamath Proof Explorer


Theorem scmatmat

Description: An N x N scalar matrix over (the ring) R is an N x N matrix over (the ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatmat.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatmat.b 𝐵 = ( Base ‘ 𝐴 )
scmatmat.s 𝑆 = ( 𝑁 ScMat 𝑅 )
Assertion scmatmat ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑀𝑆𝑀𝐵 ) )

Proof

Step Hyp Ref Expression
1 scmatmat.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 scmatmat.b 𝐵 = ( Base ‘ 𝐴 )
3 scmatmat.s 𝑆 = ( 𝑁 ScMat 𝑅 )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 eqid ( 1r𝐴 ) = ( 1r𝐴 )
6 eqid ( ·𝑠𝐴 ) = ( ·𝑠𝐴 )
7 4 1 2 5 6 3 scmatel ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑀𝑆 ↔ ( 𝑀𝐵 ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ) ) )
8 simpl ( ( 𝑀𝐵 ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ) → 𝑀𝐵 )
9 7 8 syl6bi ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑀𝑆𝑀𝐵 ) )