Description: An N x N scalar matrix over (the ring) R is an N x N matrix over (the ring) R . (Contributed by AV, 18-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scmatmat.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| scmatmat.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| scmatmat.s | ⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) | ||
| Assertion | scmatmat | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | scmatmat.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | scmatmat.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | scmatmat.s | ⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) | |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) | |
| 7 | 4 1 2 5 6 3 | scmatel | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 ↔ ( 𝑀 ∈ 𝐵 ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) ) | 
| 8 | simpl | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) → 𝑀 ∈ 𝐵 ) | |
| 9 | 7 8 | biimtrdi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵 ) ) |