Description: An N x N scalar matrix over (the ring) R is an N x N matrix over (the ring) R . (Contributed by AV, 18-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scmatmat.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
scmatmat.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
scmatmat.s | ⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) | ||
Assertion | scmatmat | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatmat.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
2 | scmatmat.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
3 | scmatmat.s | ⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) | |
4 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
5 | eqid | ⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) | |
6 | eqid | ⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) | |
7 | 4 1 2 5 6 3 | scmatel | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 ↔ ( 𝑀 ∈ 𝐵 ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ) ) |
8 | simpl | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ ∃ 𝑐 ∈ ( Base ‘ 𝑅 ) 𝑀 = ( 𝑐 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) → 𝑀 ∈ 𝐵 ) | |
9 | 7 8 | syl6bi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵 ) ) |