Metamath Proof Explorer


Theorem scmatrhm

Description: There is a ring homomorphism from a ring to the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k 𝐾 = ( Base ‘ 𝑅 )
scmatrhmval.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatrhmval.o 1 = ( 1r𝐴 )
scmatrhmval.t = ( ·𝑠𝐴 )
scmatrhmval.f 𝐹 = ( 𝑥𝐾 ↦ ( 𝑥 1 ) )
scmatrhmval.c 𝐶 = ( 𝑁 ScMat 𝑅 )
scmatghm.s 𝑆 = ( 𝐴s 𝐶 )
Assertion scmatrhm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )

Proof

Step Hyp Ref Expression
1 scmatrhmval.k 𝐾 = ( Base ‘ 𝑅 )
2 scmatrhmval.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 scmatrhmval.o 1 = ( 1r𝐴 )
4 scmatrhmval.t = ( ·𝑠𝐴 )
5 scmatrhmval.f 𝐹 = ( 𝑥𝐾 ↦ ( 𝑥 1 ) )
6 scmatrhmval.c 𝐶 = ( 𝑁 ScMat 𝑅 )
7 scmatghm.s 𝑆 = ( 𝐴s 𝐶 )
8 simpr ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring )
9 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
10 eqid ( 0g𝑅 ) = ( 0g𝑅 )
11 2 9 1 10 6 scmatsrng ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ ( SubRing ‘ 𝐴 ) )
12 7 subrgring ( 𝐶 ∈ ( SubRing ‘ 𝐴 ) → 𝑆 ∈ Ring )
13 11 12 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ Ring )
14 1 2 3 4 5 6 7 scmatghm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
15 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
16 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
17 1 2 3 4 5 6 7 15 16 scmatmhm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) )
18 14 17 jca ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) )
19 15 16 isrhm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) )
20 8 13 18 19 syl21anbrc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )