Step |
Hyp |
Ref |
Expression |
1 |
|
scmatrhmval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
scmatrhmval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
scmatrhmval.o |
⊢ 1 = ( 1r ‘ 𝐴 ) |
4 |
|
scmatrhmval.t |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
5 |
|
scmatrhmval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) |
6 |
|
scmatrhmval.c |
⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) |
7 |
1 2 3 4 5
|
scmatrhmval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 ∗ 1 ) ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 ∗ 1 ) ) |
9 |
|
3simpa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
10 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) |
11 |
2
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 𝐴 ∈ Ring ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
14 |
13 3
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → 1 ∈ ( Base ‘ 𝐴 ) ) |
15 |
12 14
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → 1 ∈ ( Base ‘ 𝐴 ) ) |
16 |
1 2 13 4
|
matvscl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑋 ∈ 𝐾 ∧ 1 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑋 ∗ 1 ) ∈ ( Base ‘ 𝐴 ) ) |
17 |
9 10 15 16
|
syl12anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ∗ 1 ) ∈ ( Base ‘ 𝐴 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑐 = 𝑋 → ( 𝑐 ∗ 1 ) = ( 𝑋 ∗ 1 ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑐 = 𝑋 → ( ( 𝑋 ∗ 1 ) = ( 𝑐 ∗ 1 ) ↔ ( 𝑋 ∗ 1 ) = ( 𝑋 ∗ 1 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) ∧ 𝑐 = 𝑋 ) → ( ( 𝑋 ∗ 1 ) = ( 𝑐 ∗ 1 ) ↔ ( 𝑋 ∗ 1 ) = ( 𝑋 ∗ 1 ) ) ) |
21 |
|
eqidd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ∗ 1 ) = ( 𝑋 ∗ 1 ) ) |
22 |
10 20 21
|
rspcedvd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ∃ 𝑐 ∈ 𝐾 ( 𝑋 ∗ 1 ) = ( 𝑐 ∗ 1 ) ) |
23 |
1 2 13 3 4 6
|
scmatel |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑋 ∗ 1 ) ∈ 𝐶 ↔ ( ( 𝑋 ∗ 1 ) ∈ ( Base ‘ 𝐴 ) ∧ ∃ 𝑐 ∈ 𝐾 ( 𝑋 ∗ 1 ) = ( 𝑐 ∗ 1 ) ) ) ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑋 ∗ 1 ) ∈ 𝐶 ↔ ( ( 𝑋 ∗ 1 ) ∈ ( Base ‘ 𝐴 ) ∧ ∃ 𝑐 ∈ 𝐾 ( 𝑋 ∗ 1 ) = ( 𝑐 ∗ 1 ) ) ) ) |
25 |
17 22 24
|
mpbir2and |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ∗ 1 ) ∈ 𝐶 ) |
26 |
8 25
|
eqeltrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐶 ) |