Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scmatrhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
scmatrhmval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
scmatrhmval.o | ⊢ 1 = ( 1r ‘ 𝐴 ) | ||
scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) | ||
scmatrhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) | ||
Assertion | scmatrhmval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 ∗ 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatrhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
2 | scmatrhmval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
3 | scmatrhmval.o | ⊢ 1 = ( 1r ‘ 𝐴 ) | |
4 | scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) | |
5 | scmatrhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ∗ 1 ) ) | |
6 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∗ 1 ) = ( 𝑋 ∗ 1 ) ) | |
7 | simpr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) | |
8 | ovexd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ∗ 1 ) ∈ V ) | |
9 | 5 6 7 8 | fvmptd3 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 ∗ 1 ) ) |