Metamath Proof Explorer


Theorem scmatrhmval

Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k 𝐾 = ( Base ‘ 𝑅 )
scmatrhmval.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatrhmval.o 1 = ( 1r𝐴 )
scmatrhmval.t = ( ·𝑠𝐴 )
scmatrhmval.f 𝐹 = ( 𝑥𝐾 ↦ ( 𝑥 1 ) )
Assertion scmatrhmval ( ( 𝑅𝑉𝑋𝐾 ) → ( 𝐹𝑋 ) = ( 𝑋 1 ) )

Proof

Step Hyp Ref Expression
1 scmatrhmval.k 𝐾 = ( Base ‘ 𝑅 )
2 scmatrhmval.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 scmatrhmval.o 1 = ( 1r𝐴 )
4 scmatrhmval.t = ( ·𝑠𝐴 )
5 scmatrhmval.f 𝐹 = ( 𝑥𝐾 ↦ ( 𝑥 1 ) )
6 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 1 ) = ( 𝑋 1 ) )
7 simpr ( ( 𝑅𝑉𝑋𝐾 ) → 𝑋𝐾 )
8 ovexd ( ( 𝑅𝑉𝑋𝐾 ) → ( 𝑋 1 ) ∈ V )
9 5 6 7 8 fvmptd3 ( ( 𝑅𝑉𝑋𝐾 ) → ( 𝐹𝑋 ) = ( 𝑋 1 ) )