Metamath Proof Explorer


Theorem scmatric

Description: A ring is isomorphic to every ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatric.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatric.c 𝐶 = ( 𝑁 ScMat 𝑅 )
scmatric.s 𝑆 = ( 𝐴s 𝐶 )
Assertion scmatric ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝑅𝑟 𝑆 )

Proof

Step Hyp Ref Expression
1 scmatric.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 scmatric.c 𝐶 = ( 𝑁 ScMat 𝑅 )
3 scmatric.s 𝑆 = ( 𝐴s 𝐶 )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 eqid ( 1r𝐴 ) = ( 1r𝐴 )
6 eqid ( ·𝑠𝐴 ) = ( ·𝑠𝐴 )
7 eqid ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) )
8 4 1 5 6 7 2 3 scmatrngiso ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( ·𝑠𝐴 ) ( 1r𝐴 ) ) ) ∈ ( 𝑅 RingIso 𝑆 ) )
9 8 ne0d ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → ( 𝑅 RingIso 𝑆 ) ≠ ∅ )
10 brric ( 𝑅𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ )
11 9 10 sylibr ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝑅𝑟 𝑆 )