Step |
Hyp |
Ref |
Expression |
1 |
|
scmatric.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
scmatric.c |
⊢ 𝐶 = ( 𝑁 ScMat 𝑅 ) |
3 |
|
scmatric.s |
⊢ 𝑆 = ( 𝐴 ↾s 𝐶 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) |
8 |
4 1 5 6 7 2 3
|
scmatrngiso |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 1r ‘ 𝐴 ) ) ) ∈ ( 𝑅 RingIso 𝑆 ) ) |
9 |
8
|
ne0d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → ( 𝑅 RingIso 𝑆 ) ≠ ∅ ) |
10 |
|
brric |
⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring ) → 𝑅 ≃𝑟 𝑆 ) |