Database
BASIC LINEAR ALGEBRA
Matrices
The subalgebras of diagonal and scalar matrices
scmatscmid
Metamath Proof Explorer
Description: A scalar matrix can be expressed as a multiplication of a scalar with
the identity matrix. (Contributed by AV , 30-Oct-2019) (Revised by AV , 18-Dec-2019)
Ref
Expression
Hypotheses
scmatval.k
⊢ 𝐾 = ( Base ‘ 𝑅 )
scmatval.a
⊢ 𝐴 = ( 𝑁 Mat 𝑅 )
scmatval.b
⊢ 𝐵 = ( Base ‘ 𝐴 )
scmatval.1
⊢ 1 = ( 1r ‘ 𝐴 )
scmatval.t
⊢ · = ( · 𝑠 ‘ 𝐴 )
scmatval.s
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 )
Assertion
scmatscmid
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆 ) → ∃ 𝑐 ∈ 𝐾 𝑀 = ( 𝑐 · 1 ) )
Proof
Step
Hyp
Ref
Expression
1
scmatval.k
⊢ 𝐾 = ( Base ‘ 𝑅 )
2
scmatval.a
⊢ 𝐴 = ( 𝑁 Mat 𝑅 )
3
scmatval.b
⊢ 𝐵 = ( Base ‘ 𝐴 )
4
scmatval.1
⊢ 1 = ( 1r ‘ 𝐴 )
5
scmatval.t
⊢ · = ( · 𝑠 ‘ 𝐴 )
6
scmatval.s
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 )
7
1 2 3 4 5 6
scmatel
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 ↔ ( 𝑀 ∈ 𝐵 ∧ ∃ 𝑐 ∈ 𝐾 𝑀 = ( 𝑐 · 1 ) ) ) )
8
7
simplbda
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝑆 ) → ∃ 𝑐 ∈ 𝐾 𝑀 = ( 𝑐 · 1 ) )
9
8
3impa
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆 ) → ∃ 𝑐 ∈ 𝐾 𝑀 = ( 𝑐 · 1 ) )