Metamath Proof Explorer


Theorem scmatscmid

Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatval.k 𝐾 = ( Base ‘ 𝑅 )
scmatval.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatval.b 𝐵 = ( Base ‘ 𝐴 )
scmatval.1 1 = ( 1r𝐴 )
scmatval.t · = ( ·𝑠𝐴 )
scmatval.s 𝑆 = ( 𝑁 ScMat 𝑅 )
Assertion scmatscmid ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆 ) → ∃ 𝑐𝐾 𝑀 = ( 𝑐 · 1 ) )

Proof

Step Hyp Ref Expression
1 scmatval.k 𝐾 = ( Base ‘ 𝑅 )
2 scmatval.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 scmatval.b 𝐵 = ( Base ‘ 𝐴 )
4 scmatval.1 1 = ( 1r𝐴 )
5 scmatval.t · = ( ·𝑠𝐴 )
6 scmatval.s 𝑆 = ( 𝑁 ScMat 𝑅 )
7 1 2 3 4 5 6 scmatel ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) → ( 𝑀𝑆 ↔ ( 𝑀𝐵 ∧ ∃ 𝑐𝐾 𝑀 = ( 𝑐 · 1 ) ) ) )
8 7 simplbda ( ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉 ) ∧ 𝑀𝑆 ) → ∃ 𝑐𝐾 𝑀 = ( 𝑐 · 1 ) )
9 8 3impa ( ( 𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆 ) → ∃ 𝑐𝐾 𝑀 = ( 𝑐 · 1 ) )