Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
scmatid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
scmatid.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
|
scmatid.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
scmatid.s |
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) |
6 |
1 2 3 4 5
|
scmatsgrp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐴 ) ) |
7 |
1 2 3 4 5
|
scmatid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) ∈ 𝑆 ) |
8 |
1 2 3 4 5
|
scmatmulcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ 𝑆 ) |
9 |
8
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ 𝑆 ) |
10 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
13 |
2 11 12
|
issubrg2 |
⊢ ( 𝐴 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝐴 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐴 ) ∧ ( 1r ‘ 𝐴 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ 𝑆 ) ) ) |
14 |
10 13
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑆 ∈ ( SubRing ‘ 𝐴 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐴 ) ∧ ( 1r ‘ 𝐴 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ 𝑆 ) ) ) |
15 |
6 7 9 14
|
mpbir3and |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubRing ‘ 𝐴 ) ) |