| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							scmatid.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							scmatid.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							scmatid.e | 
							⊢ 𝐸  =  ( Base ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							scmatid.0 | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							scmatid.s | 
							⊢ 𝑆  =  ( 𝑁  ScMat  𝑅 )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							scmatsgrp | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubGrp ‘ 𝐴 ) )  | 
						
						
							| 7 | 
							
								1 2 3 4 5
							 | 
							scmatid | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  ∈  𝑆 )  | 
						
						
							| 8 | 
							
								1 2 3 4 5
							 | 
							scmatmulcl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ralrimivva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 )  | 
						
						
							| 10 | 
							
								1
							 | 
							matring | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 )  | 
						
						
							| 13 | 
							
								2 11 12
							 | 
							issubrg2 | 
							⊢ ( 𝐴  ∈  Ring  →  ( 𝑆  ∈  ( SubRing ‘ 𝐴 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐴 )  ∧  ( 1r ‘ 𝐴 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑆  ∈  ( SubRing ‘ 𝐴 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐴 )  ∧  ( 1r ‘ 𝐴 )  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 )  ∈  𝑆 ) ) )  | 
						
						
							| 15 | 
							
								6 7 9 14
							 | 
							mpbir3and | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubRing ‘ 𝐴 ) )  |