Metamath Proof Explorer


Theorem scmatsrng

Description: The set of scalar matrices is a subring of the matrix ring/algebra. (Contributed by AV, 21-Aug-2019) (Revised by AV, 19-Dec-2019)

Ref Expression
Hypotheses scmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatid.b 𝐵 = ( Base ‘ 𝐴 )
scmatid.e 𝐸 = ( Base ‘ 𝑅 )
scmatid.0 0 = ( 0g𝑅 )
scmatid.s 𝑆 = ( 𝑁 ScMat 𝑅 )
Assertion scmatsrng ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubRing ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 scmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 scmatid.b 𝐵 = ( Base ‘ 𝐴 )
3 scmatid.e 𝐸 = ( Base ‘ 𝑅 )
4 scmatid.0 0 = ( 0g𝑅 )
5 scmatid.s 𝑆 = ( 𝑁 ScMat 𝑅 )
6 1 2 3 4 5 scmatsgrp ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐴 ) )
7 1 2 3 4 5 scmatid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) ∈ 𝑆 )
8 1 2 3 4 5 scmatmulcl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( .r𝐴 ) 𝑦 ) ∈ 𝑆 )
9 8 ralrimivva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( .r𝐴 ) 𝑦 ) ∈ 𝑆 )
10 1 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
11 eqid ( 1r𝐴 ) = ( 1r𝐴 )
12 eqid ( .r𝐴 ) = ( .r𝐴 )
13 2 11 12 issubrg2 ( 𝐴 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝐴 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐴 ) ∧ ( 1r𝐴 ) ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( .r𝐴 ) 𝑦 ) ∈ 𝑆 ) ) )
14 10 13 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑆 ∈ ( SubRing ‘ 𝐴 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐴 ) ∧ ( 1r𝐴 ) ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( .r𝐴 ) 𝑦 ) ∈ 𝑆 ) ) )
15 6 7 9 14 mpbir3and ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubRing ‘ 𝐴 ) )