Metamath Proof Explorer


Theorem scmatsrng1

Description: The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses scmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
scmatid.b 𝐵 = ( Base ‘ 𝐴 )
scmatid.e 𝐸 = ( Base ‘ 𝑅 )
scmatid.0 0 = ( 0g𝑅 )
scmatid.s 𝑆 = ( 𝑁 ScMat 𝑅 )
scmatsgrp1.d 𝐷 = ( 𝑁 DMat 𝑅 )
scmatsgrp1.c 𝐶 = ( 𝐴s 𝐷 )
Assertion scmatsrng1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubRing ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 scmatid.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 scmatid.b 𝐵 = ( Base ‘ 𝐴 )
3 scmatid.e 𝐸 = ( Base ‘ 𝑅 )
4 scmatid.0 0 = ( 0g𝑅 )
5 scmatid.s 𝑆 = ( 𝑁 ScMat 𝑅 )
6 scmatsgrp1.d 𝐷 = ( 𝑁 DMat 𝑅 )
7 scmatsgrp1.c 𝐶 = ( 𝐴s 𝐷 )
8 1 2 3 4 5 6 7 scmatsgrp1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐶 ) )
9 1 2 4 6 dmatsrng ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → 𝐷 ∈ ( SubRing ‘ 𝐴 ) )
10 9 ancoms ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐷 ∈ ( SubRing ‘ 𝐴 ) )
11 eqid ( 1r𝐴 ) = ( 1r𝐴 )
12 7 11 subrg1 ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( 1r𝐴 ) = ( 1r𝐶 ) )
13 10 12 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) = ( 1r𝐶 ) )
14 13 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐶 ) = ( 1r𝐴 ) )
15 1 2 3 4 5 scmatid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) ∈ 𝑆 )
16 14 15 eqeltrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐶 ) ∈ 𝑆 )
17 eqid ( .r𝐴 ) = ( .r𝐴 )
18 7 17 ressmulr ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( .r𝐴 ) = ( .r𝐶 ) )
19 10 18 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( .r𝐴 ) = ( .r𝐶 ) )
20 19 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( .r𝐶 ) = ( .r𝐴 ) )
21 20 oveqdr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( .r𝐶 ) 𝑦 ) = ( 𝑥 ( .r𝐴 ) 𝑦 ) )
22 1 2 3 4 5 scmatmulcl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( .r𝐴 ) 𝑦 ) ∈ 𝑆 )
23 21 22 eqeltrd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 ( .r𝐶 ) 𝑦 ) ∈ 𝑆 )
24 23 ralrimivva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( .r𝐶 ) 𝑦 ) ∈ 𝑆 )
25 7 subrgring ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → 𝐶 ∈ Ring )
26 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
27 eqid ( 1r𝐶 ) = ( 1r𝐶 )
28 eqid ( .r𝐶 ) = ( .r𝐶 )
29 26 27 28 issubrg2 ( 𝐶 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝐶 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 1r𝐶 ) ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( .r𝐶 ) 𝑦 ) ∈ 𝑆 ) ) )
30 10 25 29 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑆 ∈ ( SubRing ‘ 𝐶 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 1r𝐶 ) ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 ( .r𝐶 ) 𝑦 ) ∈ 𝑆 ) ) )
31 8 16 24 30 mpbir3and ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubRing ‘ 𝐶 ) )