Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
scmatid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
scmatid.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
|
scmatid.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
scmatid.s |
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) |
6 |
|
scmatsgrp1.d |
⊢ 𝐷 = ( 𝑁 DMat 𝑅 ) |
7 |
|
scmatsgrp1.c |
⊢ 𝐶 = ( 𝐴 ↾s 𝐷 ) |
8 |
1 2 3 4 5 6 7
|
scmatsgrp1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ) |
9 |
1 2 4 6
|
dmatsrng |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → 𝐷 ∈ ( SubRing ‘ 𝐴 ) ) |
10 |
9
|
ancoms |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐷 ∈ ( SubRing ‘ 𝐴 ) ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
12 |
7 11
|
subrg1 |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐶 ) ) |
13 |
10 12
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐶 ) ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 1r ‘ 𝐴 ) ) |
15 |
1 2 3 4 5
|
scmatid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) ∈ 𝑆 ) |
16 |
14 15
|
eqeltrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) ∈ 𝑆 ) |
17 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
18 |
7 17
|
ressmulr |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → ( .r ‘ 𝐴 ) = ( .r ‘ 𝐶 ) ) |
19 |
10 18
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( .r ‘ 𝐴 ) = ( .r ‘ 𝐶 ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( .r ‘ 𝐶 ) = ( .r ‘ 𝐴 ) ) |
21 |
20
|
oveqdr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
22 |
1 2 3 4 5
|
scmatmulcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ 𝑆 ) |
23 |
21 22
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) |
24 |
23
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) |
25 |
7
|
subrgring |
⊢ ( 𝐷 ∈ ( SubRing ‘ 𝐴 ) → 𝐶 ∈ Ring ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
27 |
|
eqid |
⊢ ( 1r ‘ 𝐶 ) = ( 1r ‘ 𝐶 ) |
28 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
29 |
26 27 28
|
issubrg2 |
⊢ ( 𝐶 ∈ Ring → ( 𝑆 ∈ ( SubRing ‘ 𝐶 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 1r ‘ 𝐶 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) ) ) |
30 |
10 25 29
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑆 ∈ ( SubRing ‘ 𝐶 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ∧ ( 1r ‘ 𝐶 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) ) ) |
31 |
8 16 24 30
|
mpbir3and |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubRing ‘ 𝐶 ) ) |