Step |
Hyp |
Ref |
Expression |
1 |
|
scmatval.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
scmatval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
scmatval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
scmatval.1 |
⊢ 1 = ( 1r ‘ 𝐴 ) |
5 |
|
scmatval.t |
⊢ · = ( ·𝑠 ‘ 𝐴 ) |
6 |
|
scmatval.s |
⊢ 𝑆 = ( 𝑁 ScMat 𝑅 ) |
7 |
|
df-scmat |
⊢ ScMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } ) |
8 |
7
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ScMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } ) ) |
9 |
|
ovexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) → ( 𝑛 Mat 𝑟 ) ∈ V ) |
10 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → ( Base ‘ 𝑎 ) = ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → ( ·𝑠 ‘ 𝑎 ) = ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ) |
12 |
|
eqidd |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → 𝑐 = 𝑐 ) |
13 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → ( 1r ‘ 𝑎 ) = ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) |
14 |
11 12 13
|
oveq123d |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → ( 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) ↔ 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → ( ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) ↔ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) ) ) |
17 |
10 16
|
rabeqbidv |
⊢ ( 𝑎 = ( 𝑛 Mat 𝑟 ) → { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } = { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) } ) |
18 |
17
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑎 = ( 𝑛 Mat 𝑟 ) ) → { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } = { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) } ) |
19 |
9 18
|
csbied |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) → ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } = { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) } ) |
20 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
22 |
2
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
23 |
3 22
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
24 |
21 23
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
25 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
26 |
25 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐾 ) |
27 |
26
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ 𝑟 ) = 𝐾 ) |
28 |
20
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) = ( ·𝑠 ‘ ( 𝑁 Mat 𝑅 ) ) ) |
29 |
2
|
fveq2i |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ ( 𝑁 Mat 𝑅 ) ) |
30 |
5 29
|
eqtri |
⊢ · = ( ·𝑠 ‘ ( 𝑁 Mat 𝑅 ) ) |
31 |
28 30
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) = · ) |
32 |
|
eqidd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑐 = 𝑐 ) |
33 |
20
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) = ( 1r ‘ ( 𝑁 Mat 𝑅 ) ) ) |
34 |
2
|
fveq2i |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ ( 𝑁 Mat 𝑅 ) ) |
35 |
4 34
|
eqtri |
⊢ 1 = ( 1r ‘ ( 𝑁 Mat 𝑅 ) ) |
36 |
33 35
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) = 1 ) |
37 |
31 32 36
|
oveq123d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) = ( 𝑐 · 1 ) ) |
38 |
37
|
eqeq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) ↔ 𝑚 = ( 𝑐 · 1 ) ) ) |
39 |
27 38
|
rexeqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) ↔ ∃ 𝑐 ∈ 𝐾 𝑚 = ( 𝑐 · 1 ) ) ) |
40 |
24 39
|
rabeqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) } = { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 𝑚 = ( 𝑐 · 1 ) } ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) → { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ ( 𝑛 Mat 𝑟 ) ) ( 1r ‘ ( 𝑛 Mat 𝑟 ) ) ) } = { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 𝑚 = ( 𝑐 · 1 ) } ) |
42 |
19 41
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) ∧ ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) ) → ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ { 𝑚 ∈ ( Base ‘ 𝑎 ) ∣ ∃ 𝑐 ∈ ( Base ‘ 𝑟 ) 𝑚 = ( 𝑐 ( ·𝑠 ‘ 𝑎 ) ( 1r ‘ 𝑎 ) ) } = { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 𝑚 = ( 𝑐 · 1 ) } ) |
43 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
44 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
45 |
44
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 ∈ V ) |
46 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
47 |
46
|
rabex |
⊢ { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 𝑚 = ( 𝑐 · 1 ) } ∈ V |
48 |
47
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 𝑚 = ( 𝑐 · 1 ) } ∈ V ) |
49 |
8 42 43 45 48
|
ovmpod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 ScMat 𝑅 ) = { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 𝑚 = ( 𝑐 · 1 ) } ) |
50 |
6 49
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑆 = { 𝑚 ∈ 𝐵 ∣ ∃ 𝑐 ∈ 𝐾 𝑚 = ( 𝑐 · 1 ) } ) |