Step |
Hyp |
Ref |
Expression |
1 |
|
abn0 |
⊢ ( { 𝑥 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 ) |
2 |
|
scott0 |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑧 { 𝑥 ∣ 𝜑 } |
4 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } |
5 |
|
nfv |
⊢ Ⅎ 𝑥 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) |
6 |
4 5
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) |
8 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( rank ‘ 𝑧 ) = ( rank ‘ 𝑥 ) ) |
9 |
8
|
sseq1d |
⊢ ( 𝑧 = 𝑥 → ( ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
11 |
3 4 6 7 10
|
cbvrabw |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
12 |
|
df-rab |
⊢ { 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } |
13 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
14 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
15 |
|
df-sbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
16 |
15
|
imbi1i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
17 |
16
|
albii |
⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
18 |
14 17
|
bitr4i |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
19 |
13 18
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
20 |
19
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
21 |
11 12 20
|
3eqtri |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
22 |
21
|
eqeq1i |
⊢ ( { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = ∅ ↔ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } = ∅ ) |
23 |
2 22
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } = ∅ ) |
24 |
23
|
necon3bii |
⊢ ( { 𝑥 ∣ 𝜑 } ≠ ∅ ↔ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ≠ ∅ ) |
25 |
1 24
|
bitr3i |
⊢ ( ∃ 𝑥 𝜑 ↔ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ≠ ∅ ) |