| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scottexf.1 |
⊢ Ⅎ 𝑦 𝐴 |
| 2 |
|
scottexf.2 |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐴 |
| 4 |
|
nfv |
⊢ Ⅎ 𝑧 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝑧 ) ) |
| 7 |
6
|
sseq2d |
⊢ ( 𝑦 = 𝑧 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) ) |
| 8 |
1 3 4 5 7
|
cbvralfw |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) |
| 9 |
8
|
rabbii |
⊢ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) } |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐴 |
| 11 |
|
nfv |
⊢ Ⅎ 𝑥 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) |
| 12 |
2 11
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑤 ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) |
| 14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( rank ‘ 𝑤 ) = ( rank ‘ 𝑥 ) ) |
| 15 |
14
|
sseq1d |
⊢ ( 𝑤 = 𝑥 → ( ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) ) |
| 16 |
15
|
ralbidv |
⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) ) ) |
| 17 |
10 2 12 13 16
|
cbvrabw |
⊢ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) } = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑧 ) } |
| 18 |
9 17
|
eqtr4i |
⊢ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) } |
| 19 |
|
scottex |
⊢ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑧 ∈ 𝐴 ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑧 ) } ∈ V |
| 20 |
18 19
|
eqeltri |
⊢ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |