Step |
Hyp |
Ref |
Expression |
1 |
|
nfcv |
⊢ Ⅎ 𝑧 { 𝑥 ∣ 𝜑 } |
2 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } |
3 |
|
nfv |
⊢ Ⅎ 𝑥 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) |
4 |
2 3
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) |
5 |
|
nfv |
⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) |
6 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( rank ‘ 𝑧 ) = ( rank ‘ 𝑥 ) ) |
7 |
6
|
sseq1d |
⊢ ( 𝑧 = 𝑥 → ( ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
9 |
1 2 4 5 8
|
cbvrabw |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
10 |
|
df-rab |
⊢ { 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } |
11 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
12 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
13 |
|
df-sbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
14 |
13
|
imbi1i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
16 |
12 15
|
bitr4i |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
17 |
11 16
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ↔ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) ) |
18 |
17
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
19 |
9 10 18
|
3eqtri |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } = { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } |
20 |
|
scottex |
⊢ { 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∣ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |
21 |
19 20
|
eqeltrri |
⊢ { 𝑥 ∣ ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) } ∈ V |