Metamath Proof Explorer


Theorem sdom0

Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003)

Ref Expression
Assertion sdom0 ¬ 𝐴 ≺ ∅

Proof

Step Hyp Ref Expression
1 relsdom Rel ≺
2 1 brrelex1i ( 𝐴 ≺ ∅ → 𝐴 ∈ V )
3 0domg ( 𝐴 ∈ V → ∅ ≼ 𝐴 )
4 2 3 syl ( 𝐴 ≺ ∅ → ∅ ≼ 𝐴 )
5 domnsym ( ∅ ≼ 𝐴 → ¬ 𝐴 ≺ ∅ )
6 5 con2i ( 𝐴 ≺ ∅ → ¬ ∅ ≼ 𝐴 )
7 4 6 pm2.65i ¬ 𝐴 ≺ ∅