Step |
Hyp |
Ref |
Expression |
1 |
|
df1o2 |
⊢ 1o = { ∅ } |
2 |
1
|
breq2i |
⊢ ( 𝐴 ≼ 1o ↔ 𝐴 ≼ { ∅ } ) |
3 |
|
brdomi |
⊢ ( 𝐴 ≼ { ∅ } → ∃ 𝑓 𝑓 : 𝐴 –1-1→ { ∅ } ) |
4 |
|
f1cdmsn |
⊢ ( ( 𝑓 : 𝐴 –1-1→ { ∅ } ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 𝐴 = { 𝑥 } ) |
5 |
|
vex |
⊢ 𝑥 ∈ V |
6 |
5
|
ensn1 |
⊢ { 𝑥 } ≈ 1o |
7 |
|
breq1 |
⊢ ( 𝐴 = { 𝑥 } → ( 𝐴 ≈ 1o ↔ { 𝑥 } ≈ 1o ) ) |
8 |
6 7
|
mpbiri |
⊢ ( 𝐴 = { 𝑥 } → 𝐴 ≈ 1o ) |
9 |
8
|
exlimiv |
⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → 𝐴 ≈ 1o ) |
10 |
4 9
|
syl |
⊢ ( ( 𝑓 : 𝐴 –1-1→ { ∅ } ∧ 𝐴 ≠ ∅ ) → 𝐴 ≈ 1o ) |
11 |
10
|
expcom |
⊢ ( 𝐴 ≠ ∅ → ( 𝑓 : 𝐴 –1-1→ { ∅ } → 𝐴 ≈ 1o ) ) |
12 |
11
|
exlimdv |
⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ { ∅ } → 𝐴 ≈ 1o ) ) |
13 |
3 12
|
syl5 |
⊢ ( 𝐴 ≠ ∅ → ( 𝐴 ≼ { ∅ } → 𝐴 ≈ 1o ) ) |
14 |
2 13
|
biimtrid |
⊢ ( 𝐴 ≠ ∅ → ( 𝐴 ≼ 1o → 𝐴 ≈ 1o ) ) |
15 |
|
iman |
⊢ ( ( 𝐴 ≼ 1o → 𝐴 ≈ 1o ) ↔ ¬ ( 𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝐴 ≠ ∅ → ¬ ( 𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o ) ) |
17 |
|
brsdom |
⊢ ( 𝐴 ≺ 1o ↔ ( 𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o ) ) |
18 |
16 17
|
sylnibr |
⊢ ( 𝐴 ≠ ∅ → ¬ 𝐴 ≺ 1o ) |
19 |
18
|
necon4ai |
⊢ ( 𝐴 ≺ 1o → 𝐴 = ∅ ) |
20 |
|
1n0 |
⊢ 1o ≠ ∅ |
21 |
|
1oex |
⊢ 1o ∈ V |
22 |
21
|
0sdom |
⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
23 |
20 22
|
mpbir |
⊢ ∅ ≺ 1o |
24 |
|
breq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ≺ 1o ↔ ∅ ≺ 1o ) ) |
25 |
23 24
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ≺ 1o ) |
26 |
19 25
|
impbii |
⊢ ( 𝐴 ≺ 1o ↔ 𝐴 = ∅ ) |