| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onfin2 | ⊢ ω  =  ( On  ∩  Fin ) | 
						
							| 2 |  | inss2 | ⊢ ( On  ∩  Fin )  ⊆  Fin | 
						
							| 3 | 1 2 | eqsstri | ⊢ ω  ⊆  Fin | 
						
							| 4 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 5 | 3 4 | sselii | ⊢ 2o  ∈  Fin | 
						
							| 6 |  | sdomdom | ⊢ ( 𝐴  ≺  2o  →  𝐴  ≼  2o ) | 
						
							| 7 |  | domfi | ⊢ ( ( 2o  ∈  Fin  ∧  𝐴  ≼  2o )  →  𝐴  ∈  Fin ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( 𝐴  ≺  2o  →  𝐴  ∈  Fin ) | 
						
							| 9 |  | id | ⊢ ( 𝐴  =  ∅  →  𝐴  =  ∅ ) | 
						
							| 10 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 11 | 9 10 | eqeltrdi | ⊢ ( 𝐴  =  ∅  →  𝐴  ∈  Fin ) | 
						
							| 12 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 13 | 3 12 | sselii | ⊢ 1o  ∈  Fin | 
						
							| 14 |  | enfi | ⊢ ( 𝐴  ≈  1o  →  ( 𝐴  ∈  Fin  ↔  1o  ∈  Fin ) ) | 
						
							| 15 | 13 14 | mpbiri | ⊢ ( 𝐴  ≈  1o  →  𝐴  ∈  Fin ) | 
						
							| 16 | 11 15 | jaoi | ⊢ ( ( 𝐴  =  ∅  ∨  𝐴  ≈  1o )  →  𝐴  ∈  Fin ) | 
						
							| 17 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 18 | 17 | eleq2i | ⊢ ( ( card ‘ 𝐴 )  ∈  2o  ↔  ( card ‘ 𝐴 )  ∈  { ∅ ,  1o } ) | 
						
							| 19 |  | fvex | ⊢ ( card ‘ 𝐴 )  ∈  V | 
						
							| 20 | 19 | elpr | ⊢ ( ( card ‘ 𝐴 )  ∈  { ∅ ,  1o }  ↔  ( ( card ‘ 𝐴 )  =  ∅  ∨  ( card ‘ 𝐴 )  =  1o ) ) | 
						
							| 21 | 18 20 | bitri | ⊢ ( ( card ‘ 𝐴 )  ∈  2o  ↔  ( ( card ‘ 𝐴 )  =  ∅  ∨  ( card ‘ 𝐴 )  =  1o ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐴  ∈  Fin  →  ( ( card ‘ 𝐴 )  ∈  2o  ↔  ( ( card ‘ 𝐴 )  =  ∅  ∨  ( card ‘ 𝐴 )  =  1o ) ) ) | 
						
							| 23 |  | cardnn | ⊢ ( 2o  ∈  ω  →  ( card ‘ 2o )  =  2o ) | 
						
							| 24 | 4 23 | ax-mp | ⊢ ( card ‘ 2o )  =  2o | 
						
							| 25 | 24 | eleq2i | ⊢ ( ( card ‘ 𝐴 )  ∈  ( card ‘ 2o )  ↔  ( card ‘ 𝐴 )  ∈  2o ) | 
						
							| 26 |  | finnum | ⊢ ( 𝐴  ∈  Fin  →  𝐴  ∈  dom  card ) | 
						
							| 27 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 28 |  | onenon | ⊢ ( 2o  ∈  On  →  2o  ∈  dom  card ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ 2o  ∈  dom  card | 
						
							| 30 |  | cardsdom2 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  2o  ∈  dom  card )  →  ( ( card ‘ 𝐴 )  ∈  ( card ‘ 2o )  ↔  𝐴  ≺  2o ) ) | 
						
							| 31 | 26 29 30 | sylancl | ⊢ ( 𝐴  ∈  Fin  →  ( ( card ‘ 𝐴 )  ∈  ( card ‘ 2o )  ↔  𝐴  ≺  2o ) ) | 
						
							| 32 | 25 31 | bitr3id | ⊢ ( 𝐴  ∈  Fin  →  ( ( card ‘ 𝐴 )  ∈  2o  ↔  𝐴  ≺  2o ) ) | 
						
							| 33 |  | cardnueq0 | ⊢ ( 𝐴  ∈  dom  card  →  ( ( card ‘ 𝐴 )  =  ∅  ↔  𝐴  =  ∅ ) ) | 
						
							| 34 | 26 33 | syl | ⊢ ( 𝐴  ∈  Fin  →  ( ( card ‘ 𝐴 )  =  ∅  ↔  𝐴  =  ∅ ) ) | 
						
							| 35 |  | cardnn | ⊢ ( 1o  ∈  ω  →  ( card ‘ 1o )  =  1o ) | 
						
							| 36 | 12 35 | ax-mp | ⊢ ( card ‘ 1o )  =  1o | 
						
							| 37 | 36 | eqeq2i | ⊢ ( ( card ‘ 𝐴 )  =  ( card ‘ 1o )  ↔  ( card ‘ 𝐴 )  =  1o ) | 
						
							| 38 |  | finnum | ⊢ ( 1o  ∈  Fin  →  1o  ∈  dom  card ) | 
						
							| 39 | 13 38 | ax-mp | ⊢ 1o  ∈  dom  card | 
						
							| 40 |  | carden2 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  1o  ∈  dom  card )  →  ( ( card ‘ 𝐴 )  =  ( card ‘ 1o )  ↔  𝐴  ≈  1o ) ) | 
						
							| 41 | 26 39 40 | sylancl | ⊢ ( 𝐴  ∈  Fin  →  ( ( card ‘ 𝐴 )  =  ( card ‘ 1o )  ↔  𝐴  ≈  1o ) ) | 
						
							| 42 | 37 41 | bitr3id | ⊢ ( 𝐴  ∈  Fin  →  ( ( card ‘ 𝐴 )  =  1o  ↔  𝐴  ≈  1o ) ) | 
						
							| 43 | 34 42 | orbi12d | ⊢ ( 𝐴  ∈  Fin  →  ( ( ( card ‘ 𝐴 )  =  ∅  ∨  ( card ‘ 𝐴 )  =  1o )  ↔  ( 𝐴  =  ∅  ∨  𝐴  ≈  1o ) ) ) | 
						
							| 44 | 22 32 43 | 3bitr3d | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ≺  2o  ↔  ( 𝐴  =  ∅  ∨  𝐴  ≈  1o ) ) ) | 
						
							| 45 | 8 16 44 | pm5.21nii | ⊢ ( 𝐴  ≺  2o  ↔  ( 𝐴  =  ∅  ∨  𝐴  ≈  1o ) ) |