Metamath Proof Explorer


Theorem sdomdif

Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013)

Ref Expression
Assertion sdomdif ( 𝐴𝐵 → ( 𝐵𝐴 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 relsdom Rel ≺
2 1 brrelex1i ( 𝐴𝐵𝐴 ∈ V )
3 ssdif0 ( 𝐵𝐴 ↔ ( 𝐵𝐴 ) = ∅ )
4 ssdomg ( 𝐴 ∈ V → ( 𝐵𝐴𝐵𝐴 ) )
5 domnsym ( 𝐵𝐴 → ¬ 𝐴𝐵 )
6 4 5 syl6 ( 𝐴 ∈ V → ( 𝐵𝐴 → ¬ 𝐴𝐵 ) )
7 3 6 syl5bir ( 𝐴 ∈ V → ( ( 𝐵𝐴 ) = ∅ → ¬ 𝐴𝐵 ) )
8 2 7 syl ( 𝐴𝐵 → ( ( 𝐵𝐴 ) = ∅ → ¬ 𝐴𝐵 ) )
9 8 con2d ( 𝐴𝐵 → ( 𝐴𝐵 → ¬ ( 𝐵𝐴 ) = ∅ ) )
10 9 pm2.43i ( 𝐴𝐵 → ¬ ( 𝐵𝐴 ) = ∅ )
11 10 neqned ( 𝐴𝐵 → ( 𝐵𝐴 ) ≠ ∅ )