| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) |
| 2 |
|
domtr |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≺ 𝐵 ) |
| 5 |
|
simpr |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐵 ≼ 𝐶 ) |
| 6 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴 ) |
| 7 |
|
domentr |
⊢ ( ( 𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
| 8 |
5 6 7
|
syl2an |
⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) ∧ 𝐴 ≈ 𝐶 ) → 𝐵 ≼ 𝐴 ) |
| 9 |
|
domnsym |
⊢ ( 𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵 ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) ∧ 𝐴 ≈ 𝐶 ) → ¬ 𝐴 ≺ 𝐵 ) |
| 11 |
10
|
ex |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → ( 𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵 ) ) |
| 12 |
4 11
|
mt2d |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → ¬ 𝐴 ≈ 𝐶 ) |
| 13 |
|
brsdom |
⊢ ( 𝐴 ≺ 𝐶 ↔ ( 𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶 ) ) |
| 14 |
3 12 13
|
sylanbrc |
⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≺ 𝐶 ) |